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1 Experiment 1: Inverted Pendulum

Figure 1: Quanser linear inverted pendulum setup.

1.1 Purpose and Learning Outcomes

The aim of this experiment is twofold:

• Stabilisation and Tracking: Design a state–feedback controller that balances the
pendulum in its upright equilibrium while simultaneously tracking a commanded cart
position.

• Swing–up Control: Devise an energy–based nonlinear controller that transfers the
pendulum from its natural hanging configuration to the unstable upright equilibrium
so that the stabilising controller can take over.

After completing this experiment you should be able to:

• Derive linear state–space models from Newton–Euler equations.

• Tune Linear Quadratic Regulator (LQR) gains and interpret the effect of the weighting
matrices Q and R.

• Implement hybrid control architectures (non–linear swing–up + linear stabilisation) in
real hardware using QUARC/Simulink.

1.2 Background Theory

The inverted pendulum mounted on a cart is sketched in Fig. 1. The pivot is located on the
cart, whose horizontal displacement is xc; the pendulum angle α is measured with respect
to the upright position (i.e. α = 0 corresponds to the vertical upward configuration).

Parameters
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Mc Mass of the cart (kg)
Mp Mass of the pendulum (kg)
lp Distance from pivot to CoM (m)
Jp Pendulum moment of inertia about its CoM (kg m2)
Beq Equivalent viscous damping of cart (N s/m)
Bp Viscous damping in the pendulum joint (N m s/rad)

Equations of motion Using Lagrange’s equations and linearising about α = 0, the
coupled dynamics read

ẍc = 1
JT

[
−(Jp +Mpl

2
p)Beqẋc −MplpBpα̇ +M2

p l
2
pg α + (Jp +Mpl

2
p)Fc

]
, (1)

α̈ = 1
JT

[
−MplpBeqẋc− (Jeq +Mp)Bpα̇ + (Jeq +Mp)Mplpg α +MplpFc

]
, (2)

with
JT = JeqJp +MpJp + JeqMpl

2
p, Jeq = Mc +

ηgK
2
gJm

r2
mp

. (3)

The control force Fc is produced by the DC motor via the rack–and–pinion transmission
and is ultimately driven by the motor voltage Vm.

State–space representation Define the state vector x =
[
xc α ẋc α̇

]T
and choose

the cart voltage u ≜ Vm as input. Then Eqs. (1)–(2) can be cast in the compact form

ẋ = A x + Bu, y = C x, (4)

where

A = 1
JT


0 0 JT 0
0 0 0 JT

0 M2
p l

2
pg −(Jp +Mpl

2
p)Beq −MplpBp

0 (Jeq +Mp)Mplpg −MplpBeq −(Jeq +Mp)Bp

 , B = 1
JT


0
0

Jp +Mpl
2
p

Mplp

 ,
(5)

C =
[
1 0 0 0
0 1 0 0

]
, D = 02×1. (6)

1.3 LQR Design

Provided that (A,B) is controllable, the LQR problem consists in selecting symmetric
weights Q = diag(q1, q2, q3, q4) > 0 and R > 0 so as to minimise

J =
∫ ∞

0

(
xTQ x +Ru2

)
dt. (7)

The optimal feedback law is u = −K x with

K = R−1BTP, ATP + PA − PBR−1BTP + Q = 0, (8)

where P is the unique positive–definite solution of the Algebraic Riccati Equation.
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Tuning guidelines Increasing qi accentuates the penalty on the corresponding state
xi and therefore amplifies the i-th column of K. Conversely, enlarging R attenuates all
gains uniformly, leading to slower but less aggressive control effort.

1.4 Hybrid Control Architecture

In practice, the LQR gains are activated only when |α| < ϵ (typically ϵ = 10◦). Otherwise
a swing-up controller based on energy shaping drives the pendulum toward the upright
equilibrium. A finite–state supervisor switches between the two controllers with hysteresis
to avoid chattering.

1.5 Experimental Procedure

1. Open setup_ip02_sip.m and locate the LQR section. Initialise

Q = diag(1, 1, 1, 1), R = 0.1.

2. Run the script to compute the default K. Simulate the closed-loop response using
s_ip02_sip.m. Observe the cart displacement and pendulum angle.

3. Systematically vary R across an order of magnitude (0.01–1) and record the rise
time, overshoot and control effort.

4. With R fixed to 0.1, tune each qi individually (e.g. 1 → 10) and document the
influence on K and on the time response.

5. Iterate until the performance criteria below are satisfied while keeping |Vm| ≤ 10 V:

Settling time (2 %) ts < 2 s
Maximum pendulum angle |α|peak < 4◦

Cart position error |xc − xc,d| < 2 mm (steady state)

6. Export the logged variables data_xc, data_alpha, data_vm and generate a publication-quality
figure overlaying reference trajectories and measured signals.

A concise checklist for the lab session is provided in Appendix A.
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2 Experiment 2: Ball–and–Beam

Figure 2: Electro–mechanical Ball–and–Beam apparatus.

2.1 Objectives

Stabilise a metallic ball at an arbitrary longitudinal position on a tilting beam by means
of a rotary servo. Compare proportional (P) and proportional–derivative (PD) strategies
against the following time-domain specifications:

Steady-state error |ess| ≤ 0.5 cm
4 % settling time ts ≤ 3 s
Percent overshoot PO ≤ 5 %.

2.2 System Modelling

The inner servo loop is accurately represented by the first–order transfer function

Ps(s) = θl(s)
Vm(s) = K

s(τs+ 1) , K = 1.5 rad s−1V−1, τ = 25 ms. (9)

Neglecting friction, the ball dynamics reduce to the double integrator

Pbb(s) = X(s)
θl(s)

= Kbb

s2 , (10)

where Kbb is a geometric constant determined in the Pre-lab tasks.
Combining both subsystems yields the open-loop plant G(s) = Ps(s)Pbb(s) of relative
degree 3.

2.3 Controller Synthesis

A cascade architecture (Fig. 3) is adopted: the inner servo loop employs a fixed propor-
tional gain kp,s chosen to ensure a bandwidth one decade higher than the outer loop. The
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outer loop is a PD compensator with transfer function

Cbb(s) = Kc(s+ z)H(s), H(s) = ωfs

s+ ωf

, ωf = 2π · 5 rad/s, (11)

where H(s) is a first–order high-pass filter preventing noise amplification.

Figure 3: Cascade control structure for the Ball–and–Beam experiment.

Using the root-locus design rules for a second-order prototype with natural frequency ωn

and damping ratio ζ, the zero and proportional gain are initially selected via

z = ω2
n

KbbKc

, Kc = 2ζωn

Kbb

. (12)

Fine tuning is subsequently performed with the MATLAB sisotool.

2.4 Simulation and Validation

1. Define Kbb in the MATLAB workspace and launch sisotool with the open-loop
plant G(s).

2. Insert the target design requirements (PO and ts) and manipulate (z, Kc) until the
dominant poles lie within the admissible region.

3. Update setup_ball_beam.m with the new parameters and simulate the full cascade
model. Typical responses are shown in Fig. 4.

4. Verify that voltage saturation (|Vm| ≤ 10 V) and angle constraints (|θl| ≤ 56◦) are
respected.
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Figure 4: Simulated ball position (top), servo angle (middle) and motor voltage (bottom)
for the tuned PD controller.

3 Experiment 3: Two–Degree-of-Freedom Helicopter

Figure 5: The Quanser 2-DoF laboratory helicopter.

3.1 System Description and Coordinates

The helicopter consists of a lightweight fuselage mounted on a pivot allowing independent
pitch (θ) and yaw (ψ) rotations. Two brushless DC motors generate thrust forces Fp and
Fy which, through lever arms, actuate the corresponding axes.

3.2 Linearised State–Space Model

With the state vector x =
[
θ ψ θ̇ ψ̇

]T
and the input u =

[
Vp Vy

]T
(motor voltages),

the linear model around the hover equilibrium reads

ẋ = Ax + Bu, y =
[
θ ψ

]T
= Cx. (13)
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The matrices A and B are given by

A =



0 0 1 0
0 0 0 1
0 0 − Bp

JT,p

0

0 0 0 − By

JT,y


, B =



0 0
0 0
Kpp

JT,p

Kpy

JT,p
Kyp

JT,y

Kyy

JT,y


, (14)

where JT,p = Jeq,p +mhelil
2
cm and JT,y = Jeq,y +mhelil

2
cm.

3.3 Integral LQR Controller

Augment the state with the integral of pitch and yaw errors:

xi =
[
θ ψ θ̇ ψ̇

∫
θ dt

∫
ψ dt

]T
. (15)

The feedback law u = −Kxi is obtained by solving the augmented LQR problem with

Q = diag(200, 150, 100, 200, 50, 50), R = I2. (16)

Resulting gains are

K =
[

18.9 1.98 7.48 1.53 7.03 0.77
−2.22 19.4 −0.45 11.9 −0.77 7.03

]
. (17)

Implementation hints, pre-lab questions and a structured testing protocol are provided in
Appendix B.
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4 Experiment 4: Ball–and–Plate

Figure 6: Ball–and–Plate platform.

4.1 Kinematic Relations

From the geometry in Fig. 6, the small–angle approximations yield

sinα = rm

Lx

sin θx ≈ rm

Lx

θx, sin β = rm

Ly

θy. (18)

4.2 Linearised Dynamics

Assuming rolling without slipping and linearising about the horizontal plane, the trans-
lational accelerations become

ẍb = KBBT, x θx, KBBT,x = mbgrb

2rm

1
(mbgrb/2 + Jb)Lx

, (19)

ÿb = KBBT, y θy, KBBT,y = mbgrb

2rm

1
(mbgrb/2 + Jb)Ly

. (20)

Thus each axis may be controlled independently via a cascade structure identical to the
Ball–and–Beam, replacing Pbb(s) by KBBT/s

2.

4.3 P-Controller Analysis

Using solely a proportional gain Kc in the outer loop, the closed-loop transfer function
(y-axis) reads

Ty(s) = 125Kc

0.01s3 + s2 + 125Kc

. (21)

Root-locus inspection (Fig. 7) reveals that for all Kc > 0 a pair of poles remains in the
right half-plane, rendering the closed loop unstable. Consequently, at least a derivative
term (PD) is required to stabilise the plate.
Detailed controller synthesis (e.g., state feedback with integral action) is left as an exten-
sion exercise.
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Figure 7: Root locus of the Ball–and–Plate outer loop with pure P control.

A Quick-Reference Checklists

B 2-DoF Helicopter Pre-lab Questions

1. Identify the two controlled degrees of freedom and interpret their physical meaning.

2. Provide concise definitions of feedback and feedforward. Discuss why both may be
beneficial in aerial systems.

3. List the measurable signals available on the Quanser helicopter and explain how
they feed into the state-feedback law.

4. Outline the effect of Bp and By on the closed-loop damping. Suggest experimental
methods for estimating these parameters.
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