

SİVAS UNIVERSITY OF SCIENCE AND

TECHNOLOGY

FACULTY OF ENGINEERING AND

NATURAL SCIENCES

ALGORITHM AND PROGRAMMING - I

Experiments Manual

Supervisor: Asst. Prof. Nurhan GÜNEŞ

Laboratory Instructor: Res. Asst. Semih OKTAY

SİVAS

TABLE OF CONTENT

Experiment 0: Getting Started with C++ ... 4

1. Objective of the Experiment ... 4

2. Theoretical Background .. 4

3. Project 0 ... 8

Experiment 1: Software Engineering ... 9

1. Objective of the Experiment ... 9

2. Theoretical Background .. 9

3. Project 1 ... 17

Experiment 2: Types .. 18

1. Objective of The Experiment .. 18

2. Theoretical Background .. 18

3. Sub-Experiments ... 20

4. Project 2 ... 31

Experiment 3: Operations and Expressions .. 32

1. Objective of The Experiment .. 32

2. Theoretical Background .. 32

3. Sub-Experiments ... 34

4. Project 3 ... 43

Experiment 4: Functions and Libraries ... 44

1. Objective of the Experiment ... 44

2. Theoretical Background .. 44

3. Project 4 ... 59

Experiment 5: Using Classes ... 60

1. Objective of the Experiment ... 60

2. Theoretical Background .. 60

3. Project 5 ... 71

Experiment 6: Selection ... 72

1. Objective of the Experiment ... 72

2. Theoretical Background .. 72

3. Project 6 ... 82

Experiment 7: Repetition ... 84

1. Objective of the Experiment ... 84

2. Theoretical Background .. 84

3. Project 7 ... 95

Experiment 8: Parameter-Passing and Scope ... 97

1. Objective of the Experiment ... 97

2. Theoretical Background .. 97

3. Sub-Experiments ... 99

3. Project 8 ... 102

Experiment 9: Files and Streams .. 103

1. Objective of the Experiment ... 103

2. Theoretical Background .. 103

3. Project 9 ... 111

Experiment 10: Vectors ... 112

1. Objective of the Experiment ... 112

2. Theoretical Background .. 112

3. Project 10 ... 126

Experiment 11: Building Classes .. 128

1. Objective of the Experiment ... 128

2. Theoretical Background .. 128

3. Project 11 ... 152

Experiment 12: Enumerations .. 154

1. Objective of the Experiment ... 154

2. Theoretical Background .. 154

3. Project 12 ... 167

SOURCES ... 169

Experiment 0: Getting Started with C++

1. Objective of the Experiment

➢ To introduce the laboratory computing environment.

➢ To introduce the editing, compiling, and execution of a program.

➢ To introduce simple file manipulation commands.

2. Theoretical Background

Introduction

The main purpose of this lab is to introduce you to the computing environment of your

laboratory. You will use the ideas in this lab again and again throughout this course, so you

should make every effort to understand not only what but why you are doing what you are doing

at each step.

Before we can begin our session, your instructor will inform you how to begin a session with

the computer at your particular institution. The way this is done differs from school to school,

according to the kind of computer being used, whether they are networked or stand-alone,

whether a security system is in place, and so on. You should ask and get answers to these

questions:

1. What operating system am I using?

2. Should the computer be turned on at the beginning of the exercise and off at the end of the

exercise, or does it remain on all of the time? Turning them off is sometimes optional, but

in many computer labs, you should never turn the computer off.

3. Do I need a personal account to log in first before I can use the computer? If so, then I

have some further questions:

a. How do I find out my username?

b. How do I find out my password?

c. Is it necessary to change my password? If it is, how?

4. If I'm using a windowing environment (X Window System, OpenWindows, MacOS,

Microsoft Windows, etc.):

a. How do I start that environment?

b. How do I use that environment?

c. How do I exit that environment?

5. How do I print? What command should I use? Which printer should I sent my output to?

Will I be charged?

6. What must I do to quit a session using the computer (especially if I'm using a personal

account)?

About this Manual

Throughout this lab manual, instructions will be printed in this default font (the one you are

reading). To help you distinguish the instructions from what appears on your screen, text that

you should see displayed on your screen will be shown in this typewriter font.

There's a subtle distinction between typing and entering information:

• To type the letter y, simply press the keyboard key marked y.

• To enter the letter y, press the keyboard key marked y, followed by the key

marked Return or Enter.

Operating System

First, you have to become familiar with Microsoft Windows, the operating system you're using

(if you're not already).

You may find it challenging enough getting used to your operating system, so don't be afraid to

play around to get used to it. Keep the appropriate instructions handy for every lab since you'll

need to create folders and copy files for every lab.

Programming Environment

There are many different compilers you can use to compile C++ programs. Visual Studio from

Microsoft is already picked for you.

As with the computing environment, you'll continually need these instructions

for every lab. Bookmark the appropriate instructions so that you can use them for every lab.

Work on a Program

This is the program that you need for the environment instructions in the previous section.

/* bases.cpp demonstrates basic I/O in C++.

 *

 * Written by: Jane Doe, Feb 29, 1999.

 * Written for: CS I, at City University.

 *

 * Specification:

 * Input(keyboard): aNumber, an integer;

 * Output(screen): the base 10, 8 and 16 representations of

aNumber.

**

*********/

#include <iostream>

using namespace std;

int main()

{

 // declare an integer container to hold the input number

 int aNumber;

 // 0. print a message explaining the purpose of the

program.

 cout << "\nThis program inputs a base-10 integer"

 << "\n\tand displays its value in bases 8 and 16\n";

 // 1. ask the user to enter an integer.

 cout << "\nPlease enter an integer: ";

 // 2. input an integer, storing it in variable aNumber.

 cin >> aNumber;

 // 3. output the base-8 and base-16 representations of

aNumber.

 cout << "\n\nThe base-8 representation of " << aNumber << "

is "

 << oct << aNumber

 << ",\n\tand the base-16 representation is "

 << hex << aNumber

 << "\n\n";

}

Applying the Scientific Method

After you've successfully copied, compiled, and executed the program above, continue on with

this exercise.

An important part of any science, including the science of computing, is to be able to observe

behavior, form hypotheses, and then design and carry out experiments to test your hypotheses.

The next part of this exercise involves applying the scientific method to infer (from the

statements within bases.cpp) how the certain aspects of C++ output work. Since two heads

are (sometimes) better than one, feel free to work through this section with the person sitting

next to you.

Observe

Run the bases program one or more times and study its behavior; then study the text

of bases.cpp. Here's the question we want to address: What in the world do the

symbols \n and \t do for the program?

Hypothesis

Question #0.1: Construct a hypothesis (i.e., a statement) that states what you think the

symbols \n and \t do in the program.

Hint: they do slightly different things, but they both have an effect on the output of the program.

You do not have to be right yet; you're simply making a prediction. If your experimentation

proves the hypothesis, then your conclusion is easy; if your experimentation proves the

hypothesis is wrong, then you change it for your conclusion. It's really the conclusion that

matters.

Experiment

Design an experiment using bases.cpp that tests your hypothesis. Modify bases.cpp as

necessary to perform your experiment, compile the program, and run it.

Question #0.2: What results did you get?

Question #0.3: Do these results confirm or contradict your hypothesis?

If the experiment confirms the hypothesis, construct another experiment, a tougher experiment

to test the hypothesis further. If the experiment contradicts the hypothesis, come up with a new

hypothesis, and try it all again.

For each iteration through this process, write down your hypothesis, your experiment, and your

results.

Conclusion

Question #0.4: What conclusion have you reached about the \n and \t symbols?

Question #0.5: Why do you suppose that these symbols are known as whitespace

characters?

You may find it very useful to compare your hypotheses and experiments with the hypotheses

and experiments of your fellow classmates; remember: the more experiments you have, the

stronger your hypothesis.

Submit

Turn the answers to the questions in the lab exercise. Turn in a copy of the program that you

copied over and compiled. Also, turn in a sample execution of your program.

Terminology

entering data, operating system, password, personal account, typing data, username, whitespace

character

3. Project 0

Your instructor will assign you one of the problems below. To solve your problem, write a

program that outputs the necessary information.

Project #0.1: Write flies.cpp -- a program that produces the following output:

 like

 flies an

 Time arrow ...

 Fruit like banana.

 flies a

Project #0.2: Write recipe.cpp -- a program that produces the following output:

Pop 1 cup of popcorn

Melt 1 stick of butter

Combine popcorn and butter

Salt to taste

Project #0.3: Write direct.cpp -- a program that produces detailed directions to your

house, such as:
Take I-96 to U.S. 131

Take 131 3 miles south to Hall St.

Take Hall 1 mile east to Madison Ave.

Take Madison 3 blocks north to Sherman St.

Take Sherman 2 blocks east to 1000 Sherman St.

Project #0.4: Write me.cpp -- a program that produces output describing yourself, such as:
Name: John Whorfin

Gender: Male

Year: Freshman

Phone: 555-9876

Hobbies: Swimming, volleyball and eighth-dimensional physics

Quote: "Laugh while you can, monkey-boy!"

Turn In

Turn the following things:

1. Your source program.

2. The output from an execution of your program.

Experiment 1: Software Engineering

1. Objective of the Experiment

➢ To practice using the computing environment.

➢ To gain experience designing programs to solve problems.

➢ To gain experience building programs from a design.

➢ To gain experience with compiler errors, deliberately generating them.

2. Theoretical Background

Introduction

Our exercise is to learn how to design and write a program. Since doing so is creating software,

this endeavor is sometimes called software engineering. The particular design technique we

will be using in this manual is called object-centered design (OCD), a methodology explicitly

designed to help novice programmers get started writing software.

The process of developing a program to solve a problem involves several stages:

1. Design: Carefully plan your program using OCD.

1. Behavior: Describe as precisely as possible what the program must do.

2. Objects: Using the behavioral description, identify the objects needed to solve the

problem.

3. Operations: Using the behavioral description, identify the operations needed to

solve the problem.

4. Algorithm: Organize the objects and operations into an algorithm---a sequence of

steps that solves the problem.

2. Coding: Translate your algorithm into a programming language like C++.

3. Testing: Run your program with sample data to check for errors, and debug your errors

until there aren't any more.

4. Maintenance: Perform any modifications needed to improve the program.

This lab will use an example problem to elaborate a bit on these steps and to see an example

C++ program. The main work you'll have to do for this lab will be modifying the program and

observing the results.

Do not worry or panic if a topic is confusing and it's not explained in great detail. We will go

through each of these topics in subsequent labs.

Design

Yogi Berra once supposedly said,

If you don't know where you're going, you'll end up somewhere else!

This idea is especially important when writing software: you need to know where you are going

before you sit down to write a C++ program. This is done by spending some

time designing your program.

Helpful hint: A good design makes a program easy to write.

If you are not a novice programmer, spending the time to design a program may seem like a

waste, especially at the beginning when problems are relatively easy. However, the problems

will soon become more difficult. If you get in the habit of carefully designing your software

now (while doing so is easy), then designing elegant solutions for more difficult problems will

also be relatively easy. But if you take a short cut now and skip the design stage, you will not

master object-centered design, and when the problems get more difficult, you will find that your

peers are writing better programs and writing them faster than you.

So be disciplined and get into the habit of carefully designing your software. The remainder of

this section will teach you how.

Object-centered design consists of four sub-stages: describing how the program must behave to

solve the problem, identifying its objects, identifying its operations, and organizing those

objects and operations into an algorithm.

Behavior

We can describe our program's behavior as follows:

Our program should first display on the screen a greeting, after which it should display a prompt

for the lengths of the legs of a right triangle. It should then read these two values from the

keyboard. Once it has the two leg lengths, it should compute the hypotenuse length. It should

then display the hypotenuse length (and appropriate labels) on the screen.

This behavioral description gives us all of the information we need to get started designing

our program. In particular, it provides us with the objects and the operations our program

requires to solve the problem. It does not magically fall from the sky, but it's a natural

explanation of what we want the program to do. What are the steps you would do to solve the

problem? We then throw in steps to read in data and to display the results of the solution.

Once we have our behavior description, we can pick out our objects and operations. True to its

name, OCD says we pick out our objects first...

Objects

Picking out our objects is as simple as picking out the nouns in our behavioral description

(ignoring nouns like "program" and "user"). The result is a list of the objects our program needs

to define:

Description Type Kind Name

the screen ostream varying cout

a greeting string constant --

a prompt for the legs string constant --

the length of the first leg double varying leg1

the length of the second leg double varying leg2

the keyboard istream varying cin

the hypotenuse value double varying hypotenuse

labels for the hypotenuse string constant --

Once we know the objects in our problem, it is useful to specify the basic flow of information

in our program in terms of the objects going in and data going out. For example, we can write:

Specification:

input (keyboard): leg1 and leg2, two double values.

output (screen): hypotenuse, a double value.

Such a specification succinctly states what the program does to solve the problem in terms of

its inputs and outputs. (Output items like a greeting, prompts and labels are assumed.) It is good

programming style to provide such a specification as part of the program's opening comment,

for documentation purposes.

Operations

Just as our nouns are objects, verbs are our operations for our algorithm:

Description Predefined? Name Library

display the greeting yes << iostream

display a prompt yes << iostream

read the length of the first leg yes >> iostream

read the length of the second leg yes >> iostream

compute the hypotenuse length ?? ?? ??

display the hypotenuse yes << iostream

display the label yes << iostream

In addition to listing the basic operations, we also list whether or not the operation is predefined;

if so, how it is specified, and where the operation is defined.

This table provides us with the basic operations needed to solve our problem; however, there is

no predefined operation to compute the length of the hypotenuse of a right triangle. To do so,

we must refine this operation by breaking it down into smaller ones. In particular, the

Pythagorean Theorem tells us that we need these operations to compute the hypotenuse length:

Description Predefined? Name Library

compute the square of a leg yes pow() cmath

add two squared legs yes + built-in

compute the square root yes sqrt() cmath

store a value in a variable yes = built-in

Algorithm

Once we have identified all of the objects and operations needed to solve our problem, we can

organize them into a sequence of steps that solves our problem---an algorithm. An algorithm

should specify what a program does in fair detail, but it need not worry about the syntax details

of a particular language like C++.

We've already noted above some C++ objects that we'll use (specifically cin and cout) and

some C++ operations (e.g., >> and <<). We'll cheat a bit in our algorithm by using these C++

names, but if we wanted to switch languages, we could easily switch these names.

1. Display via cout a greeting for the user.

2. Display via cout prompts for the two leg lengths.

3. Read values from cin for leg1 and leg2.

4. Compute the hypotenuse length using the Pythagorean Theorem:

hypotenuse = sqrt(pow(leg1, 2.0) + pow(leg2, 2.0))

5. Display via cout the value of hypotenuse along with an appropriate label.

This algorithm provides the blueprint for our C++ program. Once we have it, we are done

designing our program, and are ready to begin implementing our design.

Coding

Before working through the rest of this lab, make sure you have work through the operating-

system and compiler specific portions of Lab #0 to become familiar with your environment.

In the lab1 directory, open up the hypot.cpp file. If you obtained this from a zipped file,

you should find the file in the lab1 directory; otherwise, you'll have to create the directory and

download the file.

We are going to take a big jump here and simply look at the code for this program; in most labs,

you'll write a lot of this code. Take a look at the hypot.cpp file that's provided for you.

You'll play around with the syntax of this program below, but for now compare how the

program statements match up with the algorithm steps. For each step of the algorithm, there's

usually one and occasionally two C++ statements for the algorithm step. This indicates you

have a good algorithm; if you find yourself needing more statements for an algorithm step, then

you probably have to revise your algorithm.

After the program is written, we compile the program. Go ahead and do this. (You will not

know how to do this unless you've read the appropriate OS and compiler directions from Lab

#0.)

In practice, it is best to compile the program on a regular basis, as you write it, so that compiler

errors don't overwhelm you at the end of the coding. It will make finding the errors easier. But

since this program was given to you, you can move abnormally fast through this step.

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab0/exercise.html
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab1/hypot.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab0/exercise.html
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab0/exercise.html

Testing

The third stage of program development is a thorough testing. The basic idea is to execute the

program using sample data values that test the program, to see if it contains any logic errors.

You compiled the program in the previous section, so execute the program with the following

values, to see if you get the correct results.

 predicted observed

 leg1 leg2 hypotenuse hypotenuse

1.0 1.0 1.414214

3.0 4.0 5.0

5.0 12.0 13.0

Question #1.1: Write down the observed values that you get testing these inputs on the

program you compiled.

Maintenance

Unlike programs that are written by students, real world programs may be used for many years.

It is often the case that such programs must be modified several times over the course of their

lifetimes, a task which is called program maintenance. Maintenance is thus the final (and

usually the longest) stage of program development. Some studies have shown that the cost of

maintaining a program can account for as much as 80% of its total cost! One of the goals of

object-oriented programming is to try to reduce this maintenance cost, by writing code that is

reusable.

Question #1.2: What changes might you like to make to this program? (You won't have to

implement them, so let the sky be your limit!)

Playing with the Program

Load hypot.cpp into your editor.

First of all, you will be making changes to the program, so you should add a modification

comment in the comment at the top of the file. Add something like this:

* Modification history:

* by John VanDoe in September 2002 for CPSC 185 at Calvin

College

* Modified to run the experiments for Lab #1.

This should go right after the author information. Recompile and execute the program. It

shouldn't execute any differently. That's because that text at the beginning of the document are

all comments. But you might wonder what makes a comment.

Comments

A comment is text that's useful for the programmer. The compiler will ignore it completely. So

if you type junk into a comment, the compiler will ignore it. If you type junk outside of a

comment, the compiler will take it as program code and will get confused.

For each of the following questions, make the change suggested and recompile your program.

If it compiles okay, we'll assume it runs okay; your answer for the question can be "compiles

fine". But if a change generates a compiler error, your answer for the question should be

the first error message that the compiler gives you. Always undo your change before going on

to the next question.

Question #1.3: What happens when you remove the asterisks (i.e., *) before the lines you

just added?

Undo your change.

Question #1.4: What happens when you remove the /* at the very beginning of the file?

Undo your change.

Question #1.5: What happens when you remove just the / at the very beginning of the

file?

Undo your change.

Question #1.6: What happens when you remove just the first * (right after the / at the

beginning of the file?

Undo your change.

You should have a good idea where this comment starts.

Question #1.7: Where do you suppose this opening comment ends?

Another way to introduce a comment is with //, two slashes. This type of comment is used to

indicate the algorithm steps in the program.

Question #1.8: Remove one of the //s in the program. What happens when you compile

the code?

And, yet again, make sure your program is restored back to a compilable state.

Includes

You'll find two lines that use the #include directive right after the opening comment. These

lines tell the compiler that it needs to access some library files. They're necessary for some of

the operations that the program does.

Question #1.9: What happens when you delete one of the #include lines?

Question #1.10: What happens when you add some spaces before a #include?

Question #1.11: What happens when you move one of the includes to the end of the file?

Remember to restore your file after each question.

The Program: int main()

The main program is designated by main(). The main algorithm must be encoded in this

function.

Question #1.12: What happens when you drop the parentheses: main() becomes

just main?

Question #1.13: What happens when you drop the int before main()?

Question #1.14: What happens when you replace the curly braces (i.e., { and }) with

parentheses (i.e., (and))?

Question #1.15: What happens when you add extra spaces before the int?

Again, restore your program after each question so that it compiles and executes correctly.

Input and Output

The input and output statements for Steps 1, 2, 3, and 5 all begin with

either cin or cout followed by objects that should be displayed and used to read in values.

The objects are separated with the operators << and >>.

Question #1.16: What happens when you replace a cout with cin?

Question #1.17: What happens when you remove a >>?

Question #1.18: What happens when you remove a <<?

Question #1.19: What happens when you replace a >> with <<?

Question #1.20: What happens when you replace a << with >>?

And yet again, restore your program after each question so that it compiles and executes

correctly.

Declarations

Before we can use a variable in a C++ program, we must first declare it.

The leg1 and leg2 variables are declared with this line:

double leg1, leg2;

Question #1.21: What happens when you delete this line?

Question #1.22: What happens when you move it after Step 4?

Question #1.23: What happens when you move it before main()?

By this point, you've probably run across a change or two that didn't matter. You made the

change, the program still compiled, and the program still executed correctly. However, not all

of these changes are good. You'll see again and again that there's often many ways to write your

program, many of them bad ways.

Helpful hint: Pay careful attention to the way code is written in the examples that you see in

this lab manual. Try to mimic this as closely as you can even if something else works just as

well.

Be sure to return your file to this original state.

Semicolons

Semicolons end almost every C++ statement.

Question #1.24: What happens when you remove a semicolon from one of the statements?

Question #1.25: What happens when you add an extra semicolon?

Question #1.26: What happens when you add some extra spaces before a semicolon?

You might be a bit worried about the #include directive; it doesn't have a semicolon!

Question #1.27: What happens when you add a semicolon after an #include directive

on the same line?

Question #1.28: How do statements and directives differ with respect to semicolons?

Submit

Turn in your answers to the questions in this lab exercise.

Terminology

algorithm, behavior, behavioral description, coding, design, implement, maintenance, object,

object-centered design, OCD, operation, program maintenance, software engineering,

specification, testing

3. Project 1

Your instructor will assign you one of the problems below. To solve your problem, write a

program that reads the necessary information to compute and output the indicated values, as

efficiently as possible. Following the pattern in the lab exercise, first, design using OCD;

then code your design in C++ using stepwise translation; finally, test your program thoroughly.

Project #1.1: Modify the program from the lab exercise to also print out the area of the triangle:
double area = 0.5 * leg1 * leg2;

cout << "The area is " << area << endl;

Note: In the following formulas, π is the symbol for "pi" on this browser.

Project 1.2. Write a program to input the radius of a circle and then compute and output its

circumference and area. The formulas for these quantities are as follows:

circumference =2 π r

area =π r2 where r is the radius of the circle.

Project 1.3. Write a program to input the radius of the circular base and the height of a right

circular cylinder, and then compute and output its surface area and volume. The formulas for

these quantities are as follows:

surface area = 2 π rh

volume = π r2h

where r is the radius of the circular bases of the cylinder and h is its height.

Project 1.4. Write a program to input the lengths of the two axes of an ellipse and compute and

output its circumference and area. The formulas for these quantities are as follows:

circumference = 2π x the square root of (((a/2)2 + (b/2)2) / 2)

area = π ab

where a and b are the lengths of the major and minor axes of the ellipse.

Project 1.5. Write a program to input the radius of a sphere and then compute and output its

the surface area and volume. The formulas for these quantities are as follows:

surface area = 4π r2

volume =(4/3)π r3

where r is the radius of the sphere.

Turn In

Turn the following things:

1. You OCD design.

2. Your source program.

3. The output from an execution of your program.

Experiment 2: Types

1. Objective of The Experiment

➢ To work with the basic data types of C++.

➢ To work with variables and their declarations.

➢ To work with constants and their declarations.

➢ To gain experience with compiler errors related to declarations and data types.

2. Theoretical Background

Introduction

In this lab, you will perform several experiments with different types of data using a pre-written

program.

Files

Starting with this lab exercise, each lab exercise will have a section named "Files", and it will

contain information like this:

Directory: lab2

• experiment.cpp is our playground for the experiments in this lab.

You should create the specified directory and download the files listed here. Every lab will have

just the one directory, but any labs will have multiple files which should all be downloaded and

saved in the directory that you create.

You will also be asked to personalize the documentation at the beginning of the files. For this

lab, add some lines to the comment at the top of the file similar to this:

* Modification history:

* by John VanDoe in September 2002 for CPSC 185 at Calvin

College

* Modified to run the experiments for Lab #2.

You should make similar additions to every code and documentation file you see

during any lab.

C++ Output

All of the things we look at in this lab are really internal to the workings of a program. In order

to get some feedback, the program needs to display, or output, some information.

Output in C++ is done with the cout object. This is the name of the screen in C++. To actually

send something to the screen, C++ gives us the << operator. In general, an output statement

looks like this:

cout << Value1 << Value2 << ... << ValueN;

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab2/experiment.cpp

where each ValueI is replaced with objects. The << operators separate each of the values. For

now, you can send any object to the screen this way.

Compiler Errors

Most (if not all) of the experiments for this lab ask you to compile program that will deliberately

generate compiler errors. This is to get you familiar with the error messages from your

compiler.

Helpful hint: The first error message from a compiler is the only one that matters.

This is a bit overstated, but not by much. Usually one mistake can generate several error

messages. The compiler may generate several messages for the same mistake; it can also get so

confused by the problem that it starts to complain about good code!

Consequently, it is fastest to fix the first error message you get and then recompile. If you try

to fix all of the error messages, you'll waste too much time trying to figure out if your fix for

the first error already fixed the other errors. When you recompile, you'll often get a whole new

batch of errors, but as long as you keep working on the first error message each time, you should

eventually arrive at a program that compiles.

In these experiments, you'll be asked to write down the first error message when you're

deliberately told to compile a program with an error in it. Write down the error

message verbatim as you read it off the screen. Write down only the first error message since

it's really the only one that matters.

Most error messages are quite awkward, and it'll help you to recognize what they mean if you

write them down carefully. Try to pick out key words (e.g., "initialization", "undeclared", etc.)

in the error message that indicate what's going wrong. Learn to recognize these words.

Compilers will also issue compiler warnings for code that's officially correct according to the

C++ standard, but probably it causes some problem. If a program generates only warnings from

the compiler, but no errors, you often get a executable program (depending on the compiler),

but most likely there's a bug in the program that will be much harder to find at run time. Heed

your compiler's warnings!

The Experiments

This lab consists of four experiments. Your instructor may ask you to do only some of them;

be sure to do those first; you will find working on the others helpful, if you have the time.

Submit

Submit your answer to the questions for the experiments that you completed. Your instructor

may also ask you to submit a copy or multiple copies of your program.

Terminology

compiler error, compiler warning, display, output

3. Sub-Experiments

a) Sub-Experiment 1

The Basic Program

Our program is already set up to handle two integer values. It declares two integer variables

and then prints their values.

Variables can be declared in basically two ways, with or without initialization:

type variable_name;

type variable_name = initializer_expression;

You can list several variables (with or without initialization) after the data type, separating them

with commas.

Our program has opted to declare and initialize two integer variables:

int i = 3, j = 5;

So int is the type, i and j are both variable_names, and 3 and 5 are

both initializer_expressions.

After the declaration is a statement to print the values. You must use explicit output statements

to see the values in your variables.

Question #2.1.1: What do you think this program will display on the screen when it

executes?

Note: there is no wrong answer to this question, or any question that asks you to speculate what

your program will do. The intent of these questions is to build your skill at reading programs

and encouraging you to speculate about how a program will execute. You'll "fix" wrong

answers in later questions.

Compile and execute the program.

Question #2.1.2: Compare your answer to the previous question and the actual output.

How do your answers differ? Explain why they different.

Initial Values in a Declaration

The original program initializes i and j to specific values. Those same values should be

printed out when you execute the program. But maybe we just got lucky.

Change the initial values of i and j to be 66 and -5, respectively.

Question #2.1.3: What does the declaration line look like now?

Question #2.1.4: What will this new version print when it executes?

Compile and execute this new version.

Question #2.1.5: What did the program display? Evaluate how good your prediction was.

No Initial Values

As noted above, initializing a variable is not required. Drop the initializations so that the

declaration looks like this:

int i, j;

Question #2.1.6: Predict what this version will print when it executes.

Compile and execute this version.

Question #2.1.7: What did the program display? Evaluate how good your prediction was.

Most likely, i and j were initialized to 0 by default. Do not count on this. Some compilers will

initialize integer variables to 0, but not all of them. Depending on the compiler and even the

version of the compiler, i and j may have been initialized to seemingly random values.

Compilers change, and you may switch compilers, so it's risky relying on automatic

initialization. Since initialization is so easy, it's much better for you to do it explicitly.

Change your program back so that i and j are initialized to 66 and -5 again.

No Declaration at All

You've been told that variables must be declared before you can use them. What happens if you

don't? Use a // comment to comment out the declaration of i and j (i.e., place the two slashes

before int, on the same line as the declaration).

Try compiling it. Ooops!

Question #2.1.8: What is the first compiler error that you get?

Variable declarations are a very common source of programming error. You may forget to

declare a variable, you may misspell it, or you may put it in the wrong place. Learn to recognize

the error message that you just got; when you see it, you most likely have a problem with a

variable declaration.

Restore the declaration (i.e., uncomment it).

Declaring Twice

What happens if you declare the same variable more than once? Copy the declaration line in

your program two times. Compile your program.

Question #2.1.9: What is the first error message that your compiler gives you?

Better not do that. Remove one of the declarations.

Identifiers for Variables

Some words in C++ have a special meaning, and you cannot use them in other contexts. Such

a keyword, or reserved word, can be used only for its particular meaning, not for a variable

that you create.

For example, int is a reserved word. You cannot use it as the name of a variable. Try it: replace

the variable i with int in the declaration. Try compiling your program.

Question #2.1.10: What is the first compiler error that you get?

Restore i to your program before you forget where it should go.

So, we must avoid keywords. Any C++ book will list the C++ keywords; check the list

occasionally so that you become familiar with the keywords. It's probably not worthwhile

deliberately memorizing them; you'll end up learning them through experience.

So then what constitutes a valid identifier? An identifier must begin with a letter and can be

followed by letters (a through z and A through Z), digits (0 through 9), and underscores (_).

Replace the variable i in your program with i3. Replace every use of the variable i.

Question #2.1.11: Predict: what will your program display?

Compile and execute your program. Your program will compile; make sure you've changed

every i variable to i3.

Question #2.1.12: What did your program actually display? Compare the output to your

prediction.

Replace the variable i3 in your program with integerVariable. (Using your editor's

search-and-replace makes this faster than doing it by hand!)

Question #2.1.13: Predict: what will your program display?

Compile and execute your program.

Question #2.1.14: What did your program actually display? Compare the output to your

prediction.

Replace the identifier integerVariable with 3i in your program. (Hey, if i3 is fine, why

not 3i?) Compile your program.

Question #2.1.15: What is the first error message your compiler gave you? What's wrong

with the identifier?

We could play this game all day, but you get the idea. Restore the variable i in your program.

Now, just because an identifier is valid does not mean that it's a good identifier. There are

several things to consider in picking names for identifiers. The first is readability. A good

identifier should indicate what object it holds. What value would you expect to find in a variable

named b? It could be a book, a Boolean, a bird, or just about anything---open up your dictionary

to the 'b's. book would be a much better name (if, in fact, it stored a book object).

Some names have implied meanings. If your value is an integer used to count, the

identifiers i, j, and k are very popular. The identifiers x, y, and z are often used for real

numbers. If you use these in other contexts, you may confuse other programmers. In general,

it's best to use full words or even phrases for your identifiers to better describe the objects they

hold.

You must also consider the form of the identifier. Conventions vary, but they're usually similar

to the one we'll use for variables:

• The identifier consists primarily of lowercase letters and (possibly) a few digits.

• Every word in the identifier, except the first word, begins with an upper case letter. So we

use integerVariable instead of IntegerVariable or integervariable.

• Do not use underscores. So use integerVariable instead of integer_variable.

Not Just Integers

These declaration experiments are not particular to integer variables or integer

values. All variables must be declared regardless of their type, and they should all be initialized

also regardless of their type. The types and initializer expressions change, but never go away.

Terminology

identifier, keyword, reserved word

b) Sub-Experiment 2

The Program

For this experiment, we will play around with the integer declarations in the original program.

The integer data type in C++ is denoted with the int keyword. This is the type used in the

declaration of integer variables.

Integer Initialization

From the first experiment, you know that you can change the initial values of i and j by

changing the initialization expression. What happens though, if the initialization expression is

not an integer?

Change the initialization expression of i to be a literal string instead of an integer. A string

begins and ends with double quotes:

"this is a string"

Consider: if someone told you they were going to give you a hug, but then kicked you, you'd

complain, right? Well, the compiler probably doesn't have the same emotional connection to

an int that you might have to a hug, but it's still going to complain.

Compile the program.

Question #2.2.1: What is the first error message that the compiler gives you?

Seems like the compiler will save you from making an initialization mistake. The problem here

is that a string of characters cannot be turned into an integer very easily. Ask yourself:

what is the best integer to represent "this is a string"?

But what if the data types were very similar and could be converted easily?

Change the initialization expression of i to be a literal character. A character is a single

character surrounded by single quotes: 'f'.

Compile the program.

Question #2.2.2: What is the first error message that the compiler gives you?

You might be very confused at this point because your compiler didn't give you an error

message. Some don't. (Answer the previous question appropriately: "I didn't get an error

message.") The int and char data types in C++ are very closely related, and you probably

won't get an error for initializing an int with a char. This is because a single char is

represented in the computer's memory as an integer. So it's very easy for the compiler to switch

between the two.

Some compilers will issue a warning for this initialization since often this is a programming

mistake; either i should be declared as a char, or the initialization is wrong. Either way, it's a

warning you should watch out for, just like any compiler error.

What about a real number, something with a decimal point in it? Change the initialization

of i to be 3.14159 (the most overused real-number literal in programming examples), and

compile the program.

Question #2.2.3: What is the first error message or warning that the compiler gives you?

Again, you probably don't get a error message, but you might have gotten a warning.

Let's try something really daring: cin. Initialize i to be equal to cin. It's a completely

ridiculous thing to do, but let's see what the compiler does. Compile the program.

Question #2.2.4: What is the first error message or warning that the compiler gives you?

This time you should get an actual error message.

Finish

Restore your program so that i is initialized to a proper integer.

c) Sub-Experiment 3

The Program

For this experiment, you will write code for real-number variables.

The keyword for the real-number data type in C++ is double. (There's also float, but it's

half as precise.)

The difference between a real number and an integer is a decimal point: real numbers have a

decimal point, integers do not.

Real Number Declarations

Consider the initialization of our integer variables in the original program:

int i = 3, j = 5;

Write declarations for double variables x and y, initializing them to 3.1 and 5.667,

respectively. Do not get rid of any code. Compile and execute your code.

Question #2.3.1: What is the declaration you successfully added to your program?

You won't see any change in the execution since the declaration and initialization is purely

internal. Once you can compile and execute the code without problems, add a statement to print

out x and y. The original program had this statement to print i and j:

cout << "i is " << i << "\n"

 << "j is " << j << endl;

Your new statement for x and y should look quite similar, replacing the integer variables with

the real-number variables and changing the labels appropriately.

Now compile and execute the program. Make sure it prints the proper labels and values for the

variables.

Question #2.3.2: What is the output statement you just added to your program?

Let's play around with these declarations.

Real-Number Initialization

In the integer experiment, we tried initializing an integer variable with various types. Let's try

this again for the double variables you just added to your program.

For the following questions, "I didn't get an error message or warning" might be perfectly

acceptible.

Initialize x to an integer. Compile your program.

Question #2.3.3: What is the first error or warning message that the compiler gives you?

If it does compile (with or without warnings), what does it print for the new initialization?

Initialize x to a character. Compile your program.

Question #2.3.4: What is the first error or warning message that the compiler gives you?

If it does compile (with or without warnings), what does it print for the new initialization?

Initialize x to a string. Compile your program.

Question #2.3.5: What is the first error or warning message that the compiler gives you?

If it does compile (with or without warnings), what does it print for the new initialization?

Initialize x to be equal to cin. Compile your program.

Question #2.3.6: What is the first error or warning message that the compiler gives you?

If it does compile (with or without warnings), what does it print for the new initialization?

Observations

You probably didn't get any warning or error for initializing x to be an integer. Keep in mind

that a real number, a double, may have a decimal point in it. It's not required to. Any number

without a decimal point can easily have one added: 3 becomes 3.0. C++ compilers are happy

to add this decimal point for you.

In the previous experiment, though, the compiler complained when you tried initializing

an int variable with a floating-point number. This is because an int cannot have a decimal

point it in. The compatibility between these two types is one-way.

Real-Number Literals

Integers are simple to write: just a bunch of digits, possibly with a negative sign on the front.

Simple real numbers, known as fixed-point real literals, are also similar to write: write some

digits and put in (at most) one decimal point. However, if you want to represent really big

or really small numbers, we'd need a simpler notation. For example, chemists like to measure

amounts of an element in moles. One mole is equivalent to about 602 million trillion atoms---

that's 602 with 21 zeros after it. Yikes!

A floating-point real literal uses scientific notation (also known as exponential

notation or floating-point notation) to represent these extreme numbers. Scientific notation

uses 10 to a power to shift the decimal point in a number. So, for example, the number 602

million trillion can be written 6.02x1023 in scientific notation. It's just a math equation: take

6.02 and multiply it by 10 to the 23th power. This effectively shifts the decimal point over 23

positions to the right, adding zeros as needed.

However, we don't have the ability to write superscripts, and programmers are notoriously lazy.

So C++ uses a short hand for floating-point notation: just the letter e for "exponent". So 602

million trillion can be written as 6.02e23 in C++.

Change your program so that x is initialized to 6.02e23 and y is initialized to 60.2e22.

Question #2.3.7: Predict: what will your program display when you execute it?

Compile and execute your program to test your prediction.

Question #2.3.8: What did your program actually display? Compare the actual output to

your prediction.

It's possible to have negative real numbers and negative exponents. Negative exponents move

the decimal point to the left, making the number a small fraction, that is, close to zero. A

negative number just makes it negative.

Terminology

exponential notation, fixed-point, floating-point, floating-point notation, scientific notation

d) Sub-Experiment 4

The Program

For this experiment, you will write code for character variables. The keyword for the

character data type in C++ is char. It represents exactly one character. A character literal

begins and ends with single quotes, with the character between them (e.g., 'a' and 'A').

Character Declarations

Write declarations for char variables ch1 and ch2, initializing them to 'a' and 'Z',

respectively. Do not get rid of any code. Compile and execute your program.

Question #2.4.1: What is the declaration that you added to your program?

You won't see any change in the execution since the declaration and initialization is purely

internal. Once you can compile and execute the code without problems, add a statement to print

out ch1 and ch2. The original program had this statement to print i and j:

cout << "i is " << i << "\n"

 << "j is " << j << endl;

Your new statement for ch1 and ch2 should look quite similar, replacing the integer variables

with the character variables and changing the labels appropriately.

Now compile and execute the program. Make sure it prints the proper labels and values for the

variables.

Question #2.4.2: What is the ouput statement you just added to your program?

Let's play around with these declarations.

Character Initialization

In the integer experiment, we tried initializing an integer variable with various different types.

Let's try this again for the char variables you just added to your program. Again, "I didn't get

any compiler errors or warnings" is an acceptible answer for these questions.

Initialize ch1 to an integer (try something between 64 and 100). Compile your program.

Question #2.4.3: What is the first error or warning message that the compiler gives you?

If it does compile (with or without warnings), what does it print for the new initialization?

Initialize ch1 to a double. Compile your program.

Question #2.4.4: What is the first error or warning message that the compiler gives you?

If it does compile (with or without warnings), what does it print for the new initialization?

Initialize ch1 to a string. Compile your program.

Question #2.4.5: What is the first error or warning message that the compiler gives you?

If it does compile (with or without warnings), what does it print for the new initialization?

Initialize ch1 to be equal to cin. Compile your program.

Question #2.4.6: What is the first error or warning message that the compiler gives you?

If it does compile (with or without warnings), what does it print for the new initialization?

Change your program back so that ch1 is initialized to a character.

Character Literals

As mentioned above, a character literal consists of two single quotes with a character between

them.

What happens if there's more than one character between them? Change the character literal

for ch1 to be 'abc'. Compile your program.

Question #2.4.7: What is the first error or warning message that the compiler gives you?

If it does compile (with or without warnings), what does it print for the new initialization?

There are some characters that perform an action. For example, if you want the displayed output

to start on a new line you must use the newline character. But you're using the newline character

in your program to control how it looks, so it's not entirely clear how you would enter a newline

into a string so that it appears in the program's output.

C++ solves this mild dilemma with escape characters. An escape character begins with the

backslash character, \, followed by another character that represents the character we want.

For example, the newline character literal is '\n'. You, the programmer, must type in two

separate characters, but to C++ this represents a single character, the newline character.

Some other escape characters include '\t' for the tab character, '\'' for a single

quote, '\"' for a double quote (more useful in strings), and '\\' for a backslash character.

Initialize ch1 to be the newline character and ch2 to be a single quote.

Question #2.4.8: Predict: what will your program display when you execute it?

Compile and execute your program to test your prediction.

Question #2.4.9: What did your program actually display? Compare the actual output to

your prediction.

As you'll see in the next experiment, these escape characters are also used in strings.

Terminology

escape character

4. Project 2

Your instructor will assign you one of the problems below. To solve your problem, write a

program that reads the necessary information to compute and output the indicated values, as

efficiently as possible. Following the pattern in the lab exercise, first, design using OCD;

then code your design in C++ using stepwise translation; finally, test your program thoroughly.

The projects for this lab ask for a relatively simple computation that is not given to you. You

should be able to find the computation in your textbook, from your own knowledge, or with a

simple search on the Internet. Be sure to indicate in your program where you got the

information.

Project #2.1: Write a program that reads a number of feet, a real (i.e., double) value, and

prints the equivalent number of inches.

Project #2.2: Write a program that reads in a Fahrenheit temperature and prints the equivalent

temperature in Kelvin.

Project #2.3: Write a program that reads in a number of days (as a double) and prints the

equivalent number of hours.

Project #2.4: Write a program that reads in an age as a double and prints the equivalent

number of "dog years".

Turn In

Turn the following things:

1. Your OCD.

2. Your source program.

3. The output from an execution of your program.

Experiment 3: Operations and Expressions

1. Objective of The Experiment

➢ To explore expressions involving the C++ fundamental types.

➢ To explore the C++ assignment and related expressions.

➢ To explore the C++ input and output expressions.

2. Theoretical Background

Introduction

The exercise for this lab involves a series of experiments, each investigating a different aspect

of C++ expressions.

Definition: An expression is a sequence of one or more operands, and zero or

more operators, that when combined, produce a value.

The operands are objects; the operators are actions. Let's consider a few simple examples:

12

is an expression. It's has one operand (the object 12), there are no operators, and it produces a

value (the object 12).

Here's a more familiar example:

2 + 3

This too fits the definition of an expression, since it consists of two operands (the objects 2 and

3) and one operator (+) that combine to produce a value (the object 5).

Operands need not be constants:

2.5 * x - 1.0

This also fits the definition of an expression, since it consists of three operands (the objects

2.5, x, and 1.0) and two operators (*, -) that combine to produce a value (1 less than the product

of 2.5 and x).

These examples have been arithmetic expressions, expressions whose operators are familiar

arithmetic operations applied to numbers. C++ provides a rich set of arithmetic operators, but

since C++ has other types of data (like characters and strings), we can also write expressions

for other types of data.

Ultimately, all computation in any programming language boils down to expressions. There are

other language features to abstract and control which and when expressions are evaluated, but

in the end, expressions do all the real work. So, to build our knowledge of writing programs,

we start at the bottom with expressions.

Expression Versus Statement

It is important to distinguish between an expression and a statement. Expressions are really an

incomplete thought, like a sentence fragment. They are the building blocks for us to write our

statements. A statement is complete thought; the compiler should have everything it needs to

carry out an action. A statement always ends in a semicolon. (Actually, this is a bit of a lie as

we'll see later.)

For example, consider the expression 2+3 again. We try to turn this into a statement by adding

a semicolon:

2+3;

But what does this mean? Translated into English, we might say "add 2 and 3", but what are

supposed to do with the result? Print it? Add it to a database? Do further computations with it?

We could come up with hundreds of legitimate things we could do with the expression. The

compiler will not guess; we must be specific.

If we want to print it

cout << 2 + 3;

or do further computations with it
int result = 2 + 3;

we have to specify these actions explicitly. Consider the English translations of these

statements: "Send the addition of 2 and 3 to the screen (i.e., cout)." and "Save the addition of

2 and 3 in result so that I can use it later." Those are complete thoughts with concrete results.

Some expressions are complete in themselves. In fact, the output statement above is actually an

output expression that contains an arithmetic expression. Output expressions are complete in

themselves, so we can just tack on a semicolon to make it a statement. (The same applies to

input expressions.)

Files

Directory: lab3

• experiment.cpp is our playground for the experiments in this lab exercise.

Create the directory, and save the file there.

Add some lines to the comment at the top of the file similar to this:

* Modification history:

* by John VanDoe in September 2002 for CPSC 185 at Calvin

College

* Modified to run the experiments for Lab #3.

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab3/experiment.cpp

The Experiments

You will find the variable declarations that you wrote previously to be useful for some of the

experiments in this lab.

Submit

Submit your answer to the questions for the experiments that you completed. Your instructor

may also ask you to submit a copy or multiple copies of your program.

Terminology

arithmetic expression, expression, operand, operator, statement, value (of an expression)

3. Sub-Experiments

a) Sub Experiment 1

Output Expressions

We took a quick look at output in the previous lab; we'll expound on that just a bit.

Output in C++ is done with the cout object. This is the name of the output screen or window.

To actually send something to the screen, C++ gives us the << operator. In general, an output

statement looks like this:

cout << Value1 << Value2 << ... << ValueN;

where each ValueI is replaced with objects. Note that << operators separate each of the

values.

As mentioned in the introduction to the lab, output statements are actually output expressions.

However, we need the semicolon to make it a statement which is what the compiler demands.

The endl Object

You may have noticed a strange object in the output statements of our programs: endl. In your

output, you should notice that endl stops the current line of output and starts the next output

on the next line. This suggests that endl is interchangeable with "\n". But just how

interchangeable?

Add this line of code in your program:

cout << "Line #1." << "\n" << "Line #2" << "\n";

Don't both removing anything from your program since you'll need it later. Recompile and run

your program.

Question #3.1.1: What does this statement print? Be very precise with the line breaks.

Replace each "\n" with an endl. Recompile and run your program.

Question #3.1.2: How has the output changed?

endl is a variable for an object, apparently some type of string object with a newline

character in it. (It might have other characters we can't see.) As we know, variables do not

magically appear in C++. Like cin and cout, the object endl comes from

the iostream library.

But that's a bit strange, right? Why not use "\n" all of the time? We could make the output

expression from above much simpler:

cout << "Line #1.\nLine #2\n";

So why bother with endl? Actually, endl is more than just the newline character; it also

indicates that you want the output to appear on the screen right now. Usually, for these labs,

you won't find this to be a big deal. It may never matter to you (depending on your program,

compiler, and operating system). Play it safe and use endl at the end of a prompt, but otherwise

it doesn't really matter if you use endl or "\n".

Output Anything

We can nearly output anything. Our program currently prints strings, integer objects, and even

the result of an expression. We can also print complex objects:

cout << cin << endl;

Add this line to your program, recompile, and execute the program.

Question #3.1.3: What does this line print?

Printing the value of cin isn't really useful; the point is that we can print it. For some objects

we'll see later on, this can be very useful, especially in debugging our code.

b) Sub-Experiment 2

Input Expressions

To make some of the other experiments easier, we'll take a look at input expressions.

Variables Only

Consider this statement:

cin >> 3;

What do you suppose this would mean? Maybe after this executes, every 3 the program

encounters should be replaced with the value the user types in from the keyboard? That seems

awfully silly and quite dangerous. So, a better question: does C++ even allow this? Try it. Add

the input statement to your program and recompile.

Question #3.2.1: What is the first compiler error that you get?

Fortunately, C++ doesn't let us do something so silly.

Instead, all of the objects in an input expression must be variables. Let's try this:

cin >> i >> j;

Add this statement after the declaration of i and j, but before the output statement. When you

run your program, enter these values:
123 456

Question #3.2.2: What values are printed for i and j? Did these values come from the

declaration or from your keyboard input?

An input statement replaces the value in a variable used in the input statement. The variable

does not remember its old values; the old value is gone.

Replacing Values

Try this variation:

Question #3.2.3: What happens if the input line is moved before the declaration?

That's actually a review of the previous lab. Remember that you can't use a variable unless you

declare it first. The order of the statements matter.

Here's a variation that will compile and execute:

Question #3.2.4: What happens if the input line is moved after the output statement?

Question #3.2.5: Use the results of this experiment to justify the claim that an input

statement replaces the values in its variables.

Question #3.2.6: Is it necessary to initialize i and j in their declaration if we read in

values for them in the very next statement?

Wrapping Up

Move the input statement back between the declaration and output statements.

c) Sub-Experiment 3

Arithmetic Expressions

The original version of our program prints the sum of i and j. C++ provides us with several

arithmetic operators:

+ addition, computes the sum of two (integer or real) operands

- subtraction, computes the difference of two (integer or real) operands

* multiplication, computes the product of two (integer or real) operands

/ division, computes the quotient of the division two (integer or real) operands

% modulus, computes the remainder of the division two integer operands

Suppose we wanted to compute the product (i.e., the multiplication) of i and j instead of their

sum.

Question #3.3.1: What change would we have to make to the program?

Test your change to make sure.

These arithmetic operators should be familiar to you, except for the last one. Let's spend some

time looking at it.

Integer and Real Division

There is an important difference between the division of two integers and two real numbers.

Let's make some changes to our program so that we can explore these differences.

The first change is to use an input statement to get values for i and j. Experiment #2 had you

add the input statement. With this input statement you can compile the program once but

execute it many times for different values for i and j.

The second change is to compute two values. The output statement already computes one value;

make it compute i/j. Then add to the output expression so that it also prints out i%j. Be sure

to change the string labels so that you can read your output easily.

Once you have these changes made, compile and execute the program to make sure it's correct.

Then, using this code as a basis, write similar lines of code for double variables x and y. For

these real-number variables, you shouldn't compute x%y since C++ won't let you.

Question #3.3.2: Use your program to fill in this chart:

i j i / j i % j x y x / y

4 1 4.0 1.0

4 2 4.0 2.0

4 3 4.0 3.0

4 4 4.0 4.0

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab3/experiment2.html

4 5 4.0 5.0

4 6 4.0 6.0

4 7 4.0 7.0

4 8 4.0 8.0

4 9 4.0 9.0

Recall that an integer is a whole number without any fractional part. So when you divide the

integer 4 by the integer 5 (i.e, 4/5), you can't do this evenly, not even once. So the integer

division is 0.

But as a real number, you can compute fractional amounts. So 4.0/5.0 is 0.8 as a real

number. Note that this is the decimal equivalent of the fraction 4.0/5.0.

But what about that modulus computation? "Modulus" is (for the most part) just another name

for "remainder". When you first learned about division, you probably learned to talk about

your result in terms of quotient and remainder:

"28 divided by 3 is 9 with a remainder of 1."

Splitting Apart Integers

Division and modulus by 10 allow us to split up integers into their decimal digits.

Question #3.3.3: Use your program to fill in this chart:

i j i / j i % j

1234 1

1234 10

1234 100

1234 1000

Can you see a pattern? How significant is the number of 0s in j?

Question #3.3.4: Use your observation to fill in this chart:

i j i / j i % j

5678 1

5678 10

5678 100

5678 1000

Use your program if you get stuck and to check your answers.

Multiples

The multiples of 2 are 0, 2, 4, 6, 8, 10, 12, ... The multiples of 3 are 0, 3, 6, 9, 12, ...

What do the multiples of 2 have in common? Two evenly divides each multiple of two; that is,

two divides each multiple without any remainder. Ah! So if m % 2 is 0, then m must be a

multiple of two.

Use this same thinking to come up with an arithmetic expression to use as a test for these

multiples:

Question #3.3.5: What do the multiples of 3 have in common?

Question #3.3.6: What do the multiples of 4 have in common?

The multiples of 2 are also known as the even numbers.

Question #3.3.7: What do the even numbers have in common?

The odd numbers are all the whole numbers that aren't even.

Question #3.3.8: What do the odd numbers have in common?

Terminology

modulus, remainder

d) Sub-Experiment 4

Logical Expressions

We wish to find out if the value of i is within the range 1 to 100. Mathematically, you can write

1 <= i <= 100

However, while C++ is very mathematically based, mathematics can often be too ambiguous

for C++. It's unclear which operator should be done first. Mathematically, we do both of the at

the same time, but C++ can't do this. Unfortunately, we don't get an error for compiling this

expression; C++ finds a different and (for us) very undesirable meaning for the expression.

Modify your program to evaluate and print the result of this expression. Compile and execute

your program.

Question #3.5.1: Fill in this chart using your program:

i 1 <= i <= 100 should be

-5

50

5000

The "should be" column is the mathematical relationship. The 1<=i<=100 column is the

result given by your C++ program. As hinted above, there should be some disagreement

between the two columns.

In order to make this expression palatable for C++, we have to break it into two comparisons

with two subexpressions. (Hmmmm... two operators, two subexpressions. Coincidence?) In

English, we might ask if "1 is less than or equal to i, and i is less than or equal to 100".

Verbally, we've broken it into two separate expressions!

Let's turn the English into an expression:

1 is less than or equal to i and i is less than or equal to 100

1 <= i ???? i <= 100

We're close; we're just need the ability to express the "and" relationship. C++ gives us

the && operator:

1 is less than or equal to i and i is less than or equal to 100

1 <= i && i <= 100

To make it easier to read, you'll find many C++ programmers add some parentheses:

(1 <= i) && (i <= 100)

Try this instead in your program. Compile and execute it.

Question #3.5.2: Fill in this chart using your program:

i (1 <= i) && (i <= 100) should be

-5

50

5000

The "should be" column should be the same as before.

C++ gives three logical operators:

&& and, produces true if and only if both of its operands are true.

|| or, produces true if and only if either of its operands are true.

! not, produces true if and only its operand is false.

The AND and OR operators each require two operands. The NOT operator requires

only one operand.

Boolean Expressions

Relational expressions and logical expressions both produce bool values as their result. For

this reason, such expressions are collectively referred to as boolean expressions.

Boolean expressions have a variety of uses. One of these is the assert() mechanism, that

allows you to halt the program if something bad happens, like a variable gets out of range. For

example, suppose we have a problem that requires us to input a number i. Further suppose that

this number must be non-zero, or the program will be unable to solve the problem correctly.

The requirement that the number be non-zero is known as a precondition; a precondition is an

expression---a condition---that must be true in order for the code to succeed.. We can check a

precondition using the assert() mechanism like so:

assert(i != 0);

This statement should be put after the statement that computes or reads in a value for i.

The parentheses in this statement are required. You can put any boolean expression between

those parentheses. If the boolean expression is true, execution will continue as usual; but if the

boolean expression is false, the program will terminate and a diagnostic message will be

displayed, listing the precondition that failed.

Add this assert after the input statement that reads in a value for i.

Question #3.5.3: What value do you need to enter to make the assert fail?

Question #3.5.4: Write down the exact message that your program gives you when the

assert fails.

Terminology

boolean expression, diagnostic message, precondition

4. Project 3

Your instructor will assign you one of the problems below. To solve your problem, write a

program that reads the necessary information to compute and output the indicated values, as

efficiently as possible. Following the pattern in the lab exercise, first, design using OCD;

then code your design in C++ using stepwise translation; finally, test your program thoroughly.

For any of these projects, declare PI as a constant:

const double PI = 3.14159;

Project #3.1: Write a program to find the circumference and area of any circle. The formulas

for these quantities are as follows:
circumference = 2 * PI * uservar.

area = PI * radius2.

Project #3.2: Write a program to find the side surface area and volume of any regular cylinder.

The formulas for these quantities are as follows:
sideSurfaceArea = 2 * PI * radius * height.

volume = PI * radius2 * height.

Project #3.3: Write a program to find the circumference and area of any regular ellipse. The

formulas for these quantities are as follows:
circumference = 2 * PI * the square root of (((height/2)2 +

(width/2)2)/2).

area = PI * height/2 * width/2.

Project #3.4: Write a program to find the surface area and volume of any sphere. The formulas

for these quantities are as follows:
surface area = 4 * PI * radius2.

volume = 4/3 * PI * radius3.

Turn In

Turn the following things:

1. Your OCD design.

2. Your source program.

3. The output from three different executions of your program.

Experiment 4: Functions and Libraries

1. Objective of the Experiment

➢ To learn how to declare simple functions.

➢ To learn how to define simple functions.

➢ To learn how to create and use a library of functions.

2. Theoretical Background

Introduction

As you likely found out the last time you purchased your last textbook, books can be quite

expensive. One way you could save yourself some money would be to share the book with

someone else. In fact, the more people you can share your book with, the more you can save.

A library (a.k.a. a library module or simply a module) is a generalization on this idea of

sharing. When a community of people pool their resources, then they can buy and share a

centralized collection of books. By cooperating this way, everyone has access to a greater set

of books than they could afford individually.

In the digital world, sharing libraries is even easier (much to the consternation of the mass

media companies). While a physical book can be actively used by only one person at a time, a

digital file can be shared by many people all at the same time. More particular to our situation,

we can write code once and share it among many other programmers.

In fact, we've already been sharing code. More accurately, we've be taking advantage of the

code others have written. For example, in all of the programs we've seen so far, we've used

the iostream library. This library defined cout and cin as well as the input and output

operators. There's actually a lot in that library, and we certainly don't want to write all of that

code for every program we write. By reusing the library, all C++ programmers saves themselves

enormous amounts of time.

As we'll see in this lab, there's nothing magical about a library, You'll see all the basic tools for

creating your own library. The main difference between the libraries you write and the standard

libraries of C++ is size, but that's mostly because these standard libraries have had so many

people and so much time spent on them.

We'll write our own library in this lab.

Review

Let us briefly review what we know about function libraries. We have seen that C++ provides

a variety of function libraries, including iostream that provides input and ouput, cmath that

provides various mathematical functions, and cctype that provides character-processing

functions.

To use a library function, a program must use the #include directive to include the library's

header file:

#include <cmath>

This includes basic definitions of the library into your program.

To call a function, you must specify its name and a list of arguments in parentheses. For

example, the cmath library contains a function named pow which computes the exponential

power of a number. If we have variables x and y (which should be doubles), we can call the

function like so:

pow(x, y)

Question #4.1: In the function call above, what is the name of the function being called?

What are the arguments in the function call?

The code associated with the function is executed, and the result is returned, x to the yth power.

Since this is an expression, you will undoubtedly put it into a context:

double result = pow(x, y);

or
cout << "The answer is " << pow(x,y) << ".\n";

Planning a Library

The library we create will provide us with a set of functions to convert English-system

measurements into their metric-system counterparts. We will call our library metric.

The first thing that we must decide is what measurement conversions we wish our library to

provide. Here are just some of the conversion we could do:

English Unit Metric Unit Conversion Equation

Inches Centimeters 1 inch = 2.54 cm

Feet Centimeters 1 foot = 30.48 cm

Feet Meters 1 foot = 0.3048 m

Yards Meters 1 yard = 0.9144 m

Miles Kilometers 1 mile = 1.609344 km

Ounces Grams 1 ounce = 28.349523 g

Pounds Kilograms 1 pound = 0.453592 kg

Tons Kilograms 1 ton = 907.18474 kg

Pints Liters 1 pint = 0.473163 l

Quarts Liters 1 quart = 0.946326 l

Gallons Liters 1 gallon = 3.785306 l

Our exercise is to write two functions to convert feet into meters and meters into feet. By

storing these function in our library metric, it can be shared by any and all programs that

need to convert between feet and meters, allowing all of us to avoid "redefining the wheel."

You may notice that you've already been provided with the feet-to-meters conversion. We'll

walk through this example, and you'll be in charge of writing the meters-to-feet conversion.

Library Structure

A library consists three separate files:

• A header file in which you declare each name that is to be accessible outside the library.

• An implementation file in which you define each name declared in the header file.

• A documentation file in which you can write comments about how to use the library.

The documentation file is not strictly necessary, any more than are comments within a program;

however it is good style to somehow provide such a file, and store within it all of the information

needed to use the library. Our custom is to place function specifications in this file.

The header file is necessary, and its role is to provide an interface to the library, by providing

just enough information for a program to use the functions in the library, without specifying

their details. In contrast, the role of the implementation file is to provide complete definitions

of the library's functions. You'll notice some redundancy in these two files, but this is

unavoidable.

Helpful hint: Remember to check both your header file and implementation file when

something goes wrong with something in your library.

Why all of these files? The reason has to do with program maintenance. If we are writing a

library, then we expect that many programs will use of it. It is often the case that even a well-

designed library may need to be updated if a better way is discovered to perform one of its

functions or even if a function needs to be fixed. If we have designed our functions carefully,

then updating a library function should simply involve altering its definition which is in the

implementation file. We may be able to leave the header file alone which would save many

people from having to recompile their programs.

Files

Directory: lab4

• metric.h, metric.cpp, and metric.doc implement a metric conversion library.

• driver.cpp implements a driver for the metric conversion library.

• Makefile is a makefile.

Create the specified directory, and copy the files above into the new directory. Only gcc users

need a makefile; all others should create a project and add all of the .cpp files to it.

Add your name, date, and purpose to the opening documentation of the code and documentation

files; if you're modifying and adding to the code written by someone else, add your data as part

of the file's modification history.

Header File Structure

Edit metric.h, the header file of our library. For convenience, we base the name of this file

after our library. Common convention tacks a .h to the end of the filename to designate this as

the header file.

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab4/metric.h
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab4/metric.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab4/metric.doc
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab4/driver.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab4/Makefile

Personalize the opening comment to the modification section of the library.

A simplified general pattern for a library header file is as follows:

OpeningDocumentation
PrototypeList

The opening documentation is a comment describing the purpose of the library, who wrote it,

and when it was last updated. The prototype list is a sequence of prototypes; we have to learn

about designing functions to learn about prototypes.

Function Design

Nothing beats a good design. So we'll use OCD to design our functions.

Behavior

First, we describe the behavior of our feet-to-meters function:

Our function should receive from its caller the number of feet to be converted, and should check

that this value is positive. It should convert that quantity to meters by multiplying it by 0.3048,

and then return the resulting value to the caller.

Note that where a program typically inputs values from the keyboard, a function

typically receives values from whoever called the function. Similarly, where

a program typically outputs values to the screen, a function typically returns a value to

whoever called the function.

This distinction is very important. Overwhelmingly, most functions do not use cin or cout.

We won't need them in our functions.

We also want to try and anticipate what could go wrong. The function will only produce a

correct result if the value it receives is not negative; this is a precondition since it's a condition

that must be true before the function can be executed.

Now let's consider our other function, converting meters to feet. This function won't be much

different than the feet-to-meters function. So, the basic structure for the behavior should be the

same. The values we receive and return will be different, and the computation is different

(division instead of multiplication), but still pretty much the same.

Question #4.2: Write the behavior paragraph for the meters-to-feet function.

Objects

We list the objects of a function in the same way that we do for a program, except we also want

to describe their movement. For each object, does it move into the function from outside, does

it move from the function out to the outside, or is it purely local to the function?

Description Type Kind Movement Name

the number of feet double varying in feet

the conversion factor double constant local 0.3048

the corresponding number of meters double varying out meters

The movement column of this chart summarizes what data is coming in and going out very

nicely. This allows us to write our specification which also includes our precondition:

Specification:

receive: feet, the number of feet to be converted.

precondition: feet is not negative.

return: meters, the equivalent of feet in meters.

Keep in mind that none of this information here is magical. The behavior paragraph is used to

create the object chart. The nouns in the behavior are our objects, and the behavior explains the

type, kind, and movement of the objects. The behavior even suggests the names of our objects.

Once we have the object chart, we can come up with the specification, looking for the objects

moving in and out of the function. The behavior paragraph establishes our preconditions.

Question #4.3: Using your behavior description, come up with an object chart for the

meters-to-feet function.

Question #4.4: Using your behavior description and object chart, come up with a

specification for the meters-to-feet function.

The specification of a function provides us all we need to write a prototype. A prototype is the

way we write the specification for our library. We'll need a prototype for every function we

write.

The simplified pattern for a function prototype is

ReturnType FunctionName (ParameterList) ;

where

• ReturnType is the type of value the function returns. It's any data type

like int or double.

• FunctionName is the name of the function. You get to choose this.

• ParameterList is a list of declarations of parameters.

Each value that our function receives must be declared as a parameter. A parameter is really a

variable just like the ones we've already declared and used. The differences are subtle: a

parameter is declared as part of the function (not inside it) and each parameter represents a

value that the function receives.

With our specification and some imagination, we can come up with the components of our

prototype:

• First, the specification tells us that our function must return the number of meters, a real

value. So our return type must be double.

• Second, we use our imagination to come up with a function name. Since the function

converts a number of feet to meters, let's try feetToMeters().

• Third, the specification also tells us that our function must receive the number of feet, also

a real value. So we'll have one parameter of type double that we'll call feet.

Now we can assemble these components into our prototype:
double feetToMeters(double feet);

You will see this prototype in both the header file (metric.h) and the documentation file

(metric.doc). C++ requires the prototype in the header file so that our program (and others)

can see it. We document it in the documentation file so that others know how to use our

function; that's why you'll see the specification just above it.

Question #4.5: Write a prototype for the meters-to-feet function.

Add your prototype to both the header file and the documentation file. Also, add a comment

containing the specification for the prototype in the documentation file.

Since parameters are like variables, their names begin with a lowercase letter, with every word

after the first capitalized. The same convention is used for naming function. These are common

conventions, although not universal; they are the convention we'll use.

As this illustrates, the stages of software design are fluid, not firm. We can build a function's

prototype (a part of coding) during our design stage, as soon as we have enough information.

Operations

Continuing with our design, our list of needed operations is quite short:

Description Predefined? Name Library

get a value from the caller yes feet built-in

check that the value is not negative yes >= 0 built-in

halt the program if the value is negative yes assert() cassert

multiply two real values yes * built-in

return a value to the caller yes return built-in

We've already partially seen the parameter mechanism that allows us to get the feet value.

We'll see more when we write our function. We'll also see the return mechanism in action. The

key now is that all of these operations are built into C++, and we'll definitely make use of them.

The relational operators and the assert() function will all help us in handling our

preconditions.

Question #4.6: Write down the operation chart for the meters-to-feet function.

Algorithm

We can then organize these operations and objects into the following algorithm:

1. Receive feet from the caller.

2. Halt the program if feet is negative.

3. Compute meters = feet * 0.3048.

4. Return meters.

Our behavior description and the operations lead directly to this algorithm.

Question #4.7: Write an algorithm for the meters-to-feet function.

Implementation File Structure

We store declarations in the header file. That's all a function prototype is: a declaration. It

declares the function's name, it's parameters, and return type. But we haven't written any code

for the function to execute!

That's what the implementation file is for. In an implementation file, we put the definitions of

our library functions. This will include another declaration of the function plus the code for the

function. Our implementation file are often named the same as our header file, excepting ending

in .cpp.

The general pattern for an implementation file is as follows:

OpeningDocumentation
Includes
DefinitionList

Take a moment to personalize the opening documentation in metric.cpp if you haven't

already.

While it's not needed for every library, it's a good habit to include our library's header file in

the implementation file. However, we have to use a variation of the #include directive.

We've normally used this form:

#include <iosteam>

for accessing system libraries. A personal library that we have in our working directory uses

different punctuation:
#include "metric.h"

Go ahead and add this line to the implementation file.

Defining A Function

The general pattern for a function definition is

ReturnType FunctionName (ParameterList) { StatementList }

where

• ReturnType, FunctionName, and ParameterList are exactly the same as in a

function prototype.

• StatementList is a sequence of valid C++ statements.

The first bullet point here is very important. Once you've written your prototype, you can copy

this line over to the implementation file for the beginning of the function definition. Just be sure

to remove the semicolon at the end. A prototype requires that punctuation, but it will cause an

error in a function definition.

A function stub is a minimal function definition. For example, this is the function stub

for feetToMeters():

double feetToMeters (double feet)

{

}

Why bother with a function stub? We can compile the program with a function stub. It gives us

a great place to stop to check our program to make sure that at least the compiler likes what

we've done.

Of course, we eventually fill the stub with code so that the function does something. That's

already been done for feetToMeters(). Nothing's been done yet for the meters-to-feet

function.

Start by writing a function stub for the meters-to-feet function, and add it to the implementation

file. Compile the program. You should be able to compile the program without errors. You may

get a warning that your function does not return anything, but we'll let that slide. Also, you only

have to compile the metric.cpp file itself; you do not have to link it with the driver yet. You

can, but you may get errors that you should ignore.

Now we can actually write code for our function using our algorithm.

1. Receive feet from the caller.

This step is taken care of for us by the C++ function-call mechanism. We've already done it!

The mere act of declaring a parameter tells C++ that we want to receive this value. That's the

whole purpose for parameters.

It's good to put this step in your algorithm to remind you where the data comes from, but once

you have the parameters declared, the function has already received the values from whatever

called it.

2. Halt the program if feet is negative.

This is our precondition. We decided that we'd do this with the assert() statement. That's

exactly what's been done in feetToMeters().

3. Compute meters = feet * 0.3048.

This step has been implemented in one declaration. Remember that we have to declare all of

our variables. The feet variable has already been declared as a parameter---that counts!

However, this is the first time we've used meters, so we declare it and initialize it with our

computation.

4. Return meters.

The third operation can be performed using the C++ return statement. Its general pattern is:

return Expression;

where Expression is any valid C++ expression. The result of the expression is sent back to

whatever code called this function.

Now it's your turn. Use your algorithm for the meters-to-feet function plus

the feetToMeters() example to implement your algorithm in the stub that you wrote

earlier. Compile the code as you go along (probably after you write each line of code); be sure

it compiles without errors or warnings when you finish.

Writing a Program to Test the Library

Next, open driver.cpp and personalize its documentation.

There's a program in this file to test the functions we've written. Such programs are

called driver programs because all they do is test drive the functions in a library.

Designing The Driver Program

Most driver programs use the same algorithm:

1. Display a prompt for whatever values the function requires as arguments.

2. Read those values from cin.

3. Call the function that you're testing using the input values as arguments.

4. Display via cout the result of calling the function plus a descriptive label.

Since every driver program uses this same basic algorithm, we're going to jump to the coding

stage of our development.

Coding the Driver Program

You've been given the code for the driver for this lab; well, most of the code. You'll have to

write the drivers for future labs, so make sure you read over this code carefully and that you

understand what it does.

Step 1 of the algorithm is merely an output statement. You've written a few of these already.

Step 2 is a matter of reading in data. This take a little more thought: you need to know what

objects you need to read in and their data types. Declare variables for these objects, and then

read in the data.

Step 3 will usually consist of a variable declaration with an initialization that calls the function

we're testing.

Step 4 is just an output statement that displays a label describing the result and displays the

result itself (otherwise, what's the point!).

Now, before we can use the library, we must include the header file in the driver file. Notice

the saving we're already getting. We write the header file once, but we're using it twice. And

this is just in one program! Be sure to use the #include "..." form to include a header

file from your personal library.

Calling a Function

Let's look more closely at Step 3 of our driver algorithm.

At the beginning of this lab, we quickly looked at the pow() function. If we had two

variables x and y, we can call the function like so: pow(x,y). Put in a context, we can then

use the value that this returns.

But we got the pow() function from a system library. What do we do with a function that we

write ourselves? Exactly the same thing.

Consider feetToMeters(). It receives a number of feet. If we want to convert 1.0 foot to

meters, we could write this:

feetToMeters(1.0)

(For now, don't worry about the context, what we do with the result). If we want to convert 2.0

feet to meters, we could write this:
feetToMeters(2.0)

If we want to convert x raised to the yth power feet to meters, we could write:

feetToMeters(pow(x,y))

In the case of our driver, though, the driver reads in a value, places it in feet, and we want to

convert that value:
feetToMeters(feet)

The driver uses this as the expression to initialize the meters variable.

Our approach to the function has changed. When we declared the function, we declared a

parameter---a variable---to receive the number of feet. But now that we're calling the function,

we can pass in a literal, a variable, or any double expression. A value that we pass into a

function is known as an argument.

Helpful hint: A parameter is always a variable, it is part of a function definition, and we get

to choose the name. An argument can be any expression, and it is part of a function call.

There are three important rules to remember when calling a function:

1. The number of arguments in a function call must equal the number of parameters in the

function's prototype, or a compilation error will occur.

2. The number of arguments in a function call must equal the number of parameters in the

function's definition, or a linking error will occur.

3. The types of the first argument and first parameter, the second argument and second

parameter, the third argument and third parameter, etc. must be the same, or a compilation

error will occur.

If you get any complaints about your function, make sure you check the function call, the

function prototype, and the function definition.

Compile and link all of your code, and test out your program.

As it stands, though, the program only tests feetToMeters(). It should also

test metersToFeet(). There are several ways to do this:

• Write a brand new driver for each function that you write. This will lead to lots of programs,

more than you really need.

• Duplicate the code to test feetToMeters() to test the meters-to-feet function. This

leads to a lot of extra code, but not nearly as much as the first option.

• Duplicate only the code you have to in order to test both functions. This is the most general

solution.

Let's try the third option here. So instead of reading in a number of feet, let's read in a generic

number. Let's call it measurement. We can then use this one value as an argument

to both functions. Its meaning in these functions will be different, a number of feet in the one

and a number of meters in the other, but that's fine. Here's what the code would look like to

test feetToMeters():

// Step 2.

double measurement;

cin >> measurement;

// Step 3.

double meters = feetToMeters (measurement);

// Step 4.

cout << measurement << " feet == " << meters << " meters\n";

Now all you have to do is use this code in the driver, and then duplicate Steps 3 and 4 for the

meters-to-feet function.

Testing

Once the program is successfully translated, we are ready to test what we have written, to see

if we can discover any logic errors. Execute the program, and use the following sample data to

test feetToMeters() correctness:

Feet Meters

1.0 0.3048

3.3 1.00584

-5.9 ERROR

Since feetToMeters() is a linear function, two test values are sufficient to verify its

correctness. Be sure to note and fix any discrepancies.

The third test value tests our precondition. This is also a good idea to make sure that the

function fails when it's supposed to.

Question #4.8: What error message does the program give when you enter the invalid

value?

Since you've been given feetToMeters(), it should run correctly. Your meters-to-feet

function may not. The sample data above can also be used to test your meters-to-feet function.

Question #4.9: What sample data are you going to use and expect for your meters-to-feet

function.

Debug your program until you get the correct results from both functions.

Maintenance

Better Error Messages

After you release your library, you might get some complaints about the error message the

functions give when they fail. The error message is far too cryptic. An assert() statement

is not always the best way to react to problems; alternatively, we can code our own precondition

handling.

Let's consider feetToMeters(). We came up with its precondition almost from the

beginning, and we have an expression for it: feet >= 0. We chose to use

the assert() statement to test the precondition; this is not the only choice we have.

Think about what we want to happen: if the precondition is false (i.e., feet is negative), then

we want to display a helpful error message and stop the program.

This new behavior, introduces one new object: cerr. Similar to cout, cerr is of

type ostream, and will display its output to the screen. However, cout should be used for

normal output with the user while cerr should be use for error messages. You use cerr just

the same way you use cout.

We have four operations here:

Description Predefined? Name Library

feet is negative yes < built-in

if...then... yes if statement built-in

display error message yes << iostream

stop the program yes exit() cstdlib

The exit() function, when executed, will stop the program immediately. The function takes

one argument, an int. The actual value of the argument is really up to you; convention is that

any non-zero value means the program stopped because of a problem. (Yes, a zero value does

mean that the program stopped normally.) You could be very sophisticated with your exit codes,

but we'll keep it simple. So, use 1 or -1.

Using all of this information, we can replace Step 2 of the algorithm for feetToMeters():

2. If feet is negative, then...

a. Display a helpful error message.

b. Exit the program.

What about that "if" operation? This is a language feature in C++ that we haven't seen yet, but

it is built in to C++. The form for a simple if statement looks like this:

if (BooleanExpression)

{

 Statements

}

So, in the code, we can replace the call to assert() with this code:

if (feet < 0)

{

 cerr << "The number of feet is negative in feetToMeters()."

<< endl;

 exit (-1);

}

That's a much more informative message; the people who use the library will be much happier.

Make this change to feetToMeters(). Compile and test your program, especially the

failure test.

Once you have this working for feetToMeters(), make similar changes to your meters-to-

feet function. The new behavior, objects, operations, and algorithm should parallel the new

design for FeetToMeteres() as should the new code.

Repeated Tests

You might find it a bit annoying to have to run the driver three times for the three test values

we have above. It might be easier if the program ran through three tests. When we want

something done more than once, we turn to loops. And when we do any counting, we turn to

a counting for loop.

The general form of a counting for loop looks like this:

for (Type loopVar = firstValue; loopVar <= lastValue;

loopVar++)

{

 Statements

}

There's a fair amount of information that we need to provide for a counting for loop:

• Type will nearly always be int; it's the data type of loopVar.

• loopVar is the counting variable. It is initialized to firstValue, is incremented each

time through the loop (with loopVar++), and stops when loopVar is greater

than lastValue.

• Statements are C++ statements which will be executed once for each value

of loopVar, firstValue through lastvalue.

This sounds like it could work for our driver. Here's a new algorithm:

1. Repeat three times:

a. Display a prompt for whatever values the function requires as arguments.

b. Read those values from cin.

c. Call the functions that you're testing using the input values as arguments.

d. Display via cout the result of calling the function plus a descriptive label.

The "repeat" action can be implemented with a loop:

for (int i = 1; i <= 3; i++)

{

 ...

}

The question is, what goes in the body of the function, replacing the ...? According to the

new algorithm, it's the same code we had before!

Add this counting for loop to your program, making sure the old steps of the algorithm are all

put between the curly braces of the loop. Also make sure the counting for loop is inside the

curly braces of main().

Now that our code is getting a little more complex, we should address the issue of indentation:

Helpful hint: You will find it much easier to debug your program if you indent your code

properly.

You may also find yourself losing a lot of points on your assignments if you don't indent

properly.

Convention suggests that every time you have an opening curly brace, you should indent a little

to the right (two to four spaces). We've already done this with our functions; you should also

do this with your loops and selection statements.

Compile and execute your program. Make sure it works correctly.

Finally, here's something to think about: how could you get this loop to execute five times?

Fifty times? Even better: how could you let the user choose how many times to execute the

loop? You have the tools to do this, but we've already done quite a bit in this lab.

Submit

Turn in a copy of all of your code, the answers to the question, and a sample run of your program

proving that the functions work properly.

Terminology

argument, argument, counting for loo, declaration, definition, documentation file, driver

program, function, function call, function stub, header file, if statment, implementation file,

interface, library, library module, loop, module, parameter, precondition, prototype, return

statement

3. Project 4

Your instructor will assign you one of the problems below. To solve your problem, write a

program that reads the necessary information to compute and output the indicated values, as

efficiently as possible. Following the pattern in the lab exercise, first, design using OCD;

then code your design in C++ using stepwise translation; finally, test your program thoroughly.

Project #4.1: Work in a group with other students to complete the metric library started in

the exercise. Assign a different person to work on each of the following groups of functions:

Lengths Weights

Inches to centimeters

(1 inch = 2.54 cm)

Yards to meters

(1 yard = 0.9144 m)

Miles to kilometers

(1 mile = 1.609344 km)

Ounces to grams

(1 ounce = 28.349523 g)

Pounds to kilograms

(1 pound = 0.453592 kg)

Tons to kilograms

(1 ton = 907.18474 kg)

Volumes Areas

Pints to liters

(1 pint = 0.473163 l)

Quarts to liters

(1 quart = 0.946326 l)

Gallons to liters

(1 gallon = 3.785306 l)

Square inches to square millimeters

(1 sq. in. = 645.16 sq.mm)

Square feet to square meters

(1 sq. foot = 0.09290304 sq.m)

Acres to square meters

(1 Acre = 4.04686x10^3 sq.m).

Each person is responsible for writing the necessary function prototypes, definitions, and

documentation specifications. Each person should write up an OCD design for at least one of

their functions.

Each group, though, should submit exactly one library, bringing together all of the prototypes,

definitions, and documentations (in three separate files, of course).

Then one of the people in the group (under the close scrutiny of the other group members)

should extend the driver from the lab exercise to test all of the functions with one input value.

The documentation file should indicate which group member was responsible for which

functions. Only that group member will be penalized for any errors in that set of functions or

its documentation.

Turn In

Turn the following things:

1. Your OCD.

2. Your source program.

3. The output from an execution of your program.

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab4/exercise.html

Experiment 5: Using Classes

1. Objective of the Experiment

➢ To learn the use of classes and methods.

➢ To experience working with text-processing problems.

➢ To see language-translation problems.

2. Theoretical Background

Introduction

In this lab's exercise, we examine two language translation problems. The first problem is the

problem of making plural nouns, and the second problem is converting a word from English

into Pig Latin. While they're rather different problems, both involve string manipulation. We

will have to explore the string library of C++.

Making Plural Nouns

Making a noun plural usually consists of adding an 's', but sometimes there are special cases we

must watch out for. Consider these examples:

Singular noun Plural noun

exercise exercises

noun nouns

word words

abscess abscesses

summons summonses

box boxes

hobby hobbies

party parties

Translating English into Pig Latin

As for Pig Latin, there are two rules:

1. If the English word begins with a consonant, move the initial consonants to the end of the

word and tack on "ay".

2. If the English word begins with a vowel, tack on "yay" to the end of the word.

English Pig Latin English Pig Latin

alphabet alphabetyay nerd erdnay

billygoat illygoatbay orthodox orthodoxyay

crazy azycray prickly icklypray

dripping ippingdray quasimodo asimodoquay

eligible eligibleyay rhythm ythmrhay

farm armfay spry yspray

ghost ostghay three eethray

happy appyhay ugly uglyyay

illegal illegalyay vigilant igilantvay

jury uryjay wretched etchedwray

killjoy illjoykay xerxes erxesxay

limit imitlay yellow ellowyay

messy essymay zippy ippyzay

Files

Directory: lab5

• piglatin.h, piglatin.cpp, and piglatin.doc implement a library for

translating into Pig Latin.

• translate.cpp implements a driver for translating keyboard input from English to

Pig Latin.

• Makefile is a makefile.

Create the specified directory, and copy the files above into the new directory. Only gcc users

need a makefile; all others should create a project and add all of the .cpp files to it.

Add your name, date, and purpose to the opening documentation of the code and documentation

files; if you're modifying and adding to the code written by someone else, add your data as part

of the file's modification history.

Strings of Characters

To solve both problems, we first look at the string library.

The string data type in C++ is implemented with a class. A class is a way for us

to encapsulate both data and actions together into one object. In a future lab, we'll look at how

we can write our own classes, but for now we'll use the classes that C++ provides for us.

A string object is used to hold a string (or sequence) of characters. A single character (i.e.,

a char) is rarely that useful by itself, so you'll find yourself using strings any time you need

to process text.

string Objects

We can easily declare and initialize string objects:

string englishWord = "farm";

After the declaration, englishWord is a string object. A string is an indexed type, so

that we can access the individual characters in the string:

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab5/piglatin.h
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab5/piglatin.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab5/piglatin.doc
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab5/translate.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab5/Makefile

The numbers 0, 1, 2 and 3 are the index values of the characters within englishWord, and

can be used to access the individual characters within the string object.

The most important thing about indexing the characters of a string is where the indexing

starts:

Helpful hint: The indexing of a string always starts at index 0.

So the first character of the string has index 0, the second characters has index 1, the third

character has index 2, and so on up to the last character whose index is one less than the size of

the string. Keep all of this in mind as you use indices to access the characters and substrings

of a string.

string Operations

As mentioned above, a class encapsulates both data and actions into one object. As a class,

the string class has many operations we can use on string objects.

An operation in a class is usually implemented as a method (also known as an instance

method or a function member). A method is merely a function defined in a class. We'll see

how to make these definitions ourselves in a later lab; for now all we need is the ability to call

them. This requires a slightly different syntax for our function call:

obj.method(args);

In the past, we didn't have an object before the function name when we called the function; but

with a method, the method must be applied to an object. Many object-oriented programmers

think of methods as messages that they send to the objects. For example,
int size = stringObject.size();

We'd think of stringObject receiving a message size() which asks the object to figure

out its size. In other words, "Hey, stringObject, what's your size?" This metaphor becomes

more important when we implement classes, but it's also helpful in mastering this new syntax

for calling methods.

Let's look at some of the provided operations of the string class. Suppose that str is

a string:

Description Syntax Explanation

Index operator str[index]

Returns the character

at index from str.

If index is out of range

for str, it will return junk

or crash your program.

Size

of string
str.size()

Returns the size of the

string.

Concatenation

of

two strings

str1 + str2

Returns a string equal to

the first string followed

by the second.

Equality of

two strings
str1 == str2

Returns true if the

two strings are

equal, false otherwise.

Substrings str.substr(start,size);

Returns the substring

starting at index start of

length size.

Finding

characters in a

string.

str.find_first_of(pattern,index)

Returns the index of the

first character

in pattern that it can find

in str, starting at index.

If it cannot find a matching

character, then it

returns string::npos.

The first three operations are pretty straightforward. Let's look at some examples of

the substr() method:

string str = "hello";

string sub1 = str.substr(0,2);

assert (sub1 == "he");

string sub2 = str.substr(3,2);

assert (sub2 == "lo");

This code compiles and executes without any problems. The last example (involving sub2) is

important because the second argument is a size, not an index (a common mistake). Often we

have the index of the last character we want; if we also have the index of the first character of

the substring, computing the size is simple:

size = last - first + 1

This is a very important computation, and you should keep this very handy.

The find_first_of() is a little more involved. Consider this code:

string sample = "Hello. Nice to meet you!";

int firstIndex = sample.find_first_of(".!?", 0);

This searches sample to find the first occurrence of a character from the pattern ".!?". It

does not need to find the entire pattern, just one of the characters from the pattern. So, in the

code above, firstIndex should be set to 5, the index of the first period in the string.

The starting index (0 in our example) allows us to start a search in the middle of a string.

Often you'll use 0 as your starting index just like above, but we could continue our example:

int secondIndex = sample.find_first_of(".!?", firstIndex+1);

This starts the search right after the previous search and finds the second occurrence of one of

the characters.

Question #5.1: What will be the value of secondIndex?

Question #5.2: What would be the value of secondIndex if we started the search

at firstIndex instead of firstIndex+1?

Remember that it is not important to memorize a library description like this. It is important to

generally know what's available in the library, where you can find the library, and (most

importantly) where you can find documentation for the library (Appendix D of C++: An

Introduction to Computing by Adams and Nyhoff is one place). The discussion in this section

will suffice for this lab---don't memorize this, but be sure to come back to this section when

working with these methods.

if Statements

In the previous lab, we used a simple if statement. Our functions in this lab require a more

powerful if statement. A full if statement looks like this:

if (BooleanExpression)

{

 Statements1

}

else

{

 Statements2

}

If the BooleanExpression is true, then only Statements1 will be executed; otherwise

(that is, if BooleanExpression is false), then only Statements2 will be executed. We

can chain two if statements into what is known as a multi-branch if:

if (BooleanExpression1)

{

 Statements1

}

else if (BooleanExpression2)

{

 Statements2

}

else

{

 Statements3

}

The pattern generalizes (as we'll see in the next lab). The boolean expressions are evaluated in

order until the first one that evaluates to true, and then its corresponding statements are

executed. If none are true, the last block of statements (which an if test) is executed.

Exactly one block of statements is executed each time through the statement.

Plural Nouns

Analysis

Examine the chart of singular and plural nouns at the beginning of this exercise. Can you pick

out the rules we need?

We'll use some simple rules:

1. In general, add "s" to the end of the word.

2. If the word ends in "s" or "x", add "es" to the end of the word.

3. If the word ends in "y", replace the "y" with "ies".

These rules are not comprehensive, but deriving a set of comprehensive rules for making plural

nouns in English is rather difficult. For example, consider the word "radius" whose plural is

"radii", not "radiuses". However, this only applies to English words with Latin roots: the plural

of "bonus" is "bonuses"; "-us" words are very tricky. Making the rules comprehensive would

take a very long time, so we'll stick with just these simple rules.

Question #5.3: For each words in the chart above, match it up with the rule that made it

plural.

Seems simple enough. It also seems reasonable that a "pluralizing function" could be generally

useful. So it certainly deserves a function and even a library.

OCD

Here's our behavior:

Our function should receive a singular noun. If the noun ends in "s" or "x", return the noun with

"es" tacked on the end. If the noun ends in "y", return the noun with the "y" replaced with "ies".

Otherwise, return the noun with "s" tacked on the end.

So far so good. It's just a transliteration of the rules. Note that the general case comes last.

Here are the objects we need:

Description Type Kind Movement Name

the singular noun string varying in singularNoun

the index of the last character of the noun int varying local lastCharIndex

the last character of the noun char varying local lastChar

the plural noun string varying in --

We have a specification for our function:

Specification:

receive: a singular noun, a string

precondition: the noun should be singular

return: the plural version of the noun, a string

In the previous lab, we used an assert() statement to enforce our precondition. We

could try to enforce the precondition for this function, but it would take a lot of work. In fact,

we'd have to implement an entire dictionary because you cannot tell just by looking at the letters

in a word if it is already plural or not.

This is okay. Not every precondition can or should be enforced by your code. It certainly makes

the code better if you can enforce your preconditions, but it's not absolutely necessary.

It is absolutely necessary, however, to clearly indicate that this is a precondition for the

function. If a programmer uses your function and passes in a plural word (like "nouns") and

gets strange results (like "nounses") it shouldn't be a surprise to the programmer---we warned

him!

Using the string operations listed above and other operations we've seen before, here are the

operations we need for this function:

Description Predefined? Name Library

receive a value yes parameter built-in

if...then... yes if statement built-in

get last character of string yes [] and size() string

compare characters yes == built-in

concatenate two strings yes + string

extract a substring yes substr() string

return a string yes return built-in

So, finally, we have our algorithm:

1. Receive singularNoun.

2. Let lastCharIndex be the size of singularNoun minus 1.

3. Let lastChar be the character of singularNoun at index lastCharIndex.

4. If lastChar is 's' or 'x',

 Return singularNoun + "es".

Otherwise if lastChar is 'y',

a. Let base be singularNoun without the trailing "y".

b. Return base + "ies".

Otherwise,

 Return singularNoun + "s".

Pig Latin Translator

Let's turn to your coding of the Pig Latin translator.

Analysis

Like the pluralizer, our Pig Latin translator will have certain rules to transform a word based

on the contents of the word. In the case of the pluralizer, the rule we applied was determined

by the last letter of the word. For your Pig Latin translator, it's the location of the first vowel.

Consider some examples:

• The Pig Latin equivalent of "dog" is "ogday"; "style" becomes "ylestay"; "stripe" becomes

"ipestray". The initial consonants are moved to the end of the word and "ay" is tacked on

the end.

• If the word begins with a vowel: "apple" and "orange" become "appleyay" and "orangeyay".

There aren't any consonants to move, but we tack "yay" (not just "ay") to the end of the

word.

The focal point in both rules is the first vowel. We'll define 'a', 'e', 'i', 'o', 'u', and 'y' as vowels.

While 'y' is only sometimes a vowel, the rules work better if we consider it a vowel.

OCD

Let's try this behavior:

Receive an English word. Find the position of the first vowel in that word, checking that a

vowel was actually present. If a vowel begins the word, then return the concatenation of the

English word and "yay". Otherwise, the Pig Latin word consists of three parts (in order): (1) the

portion of the English word from the first vowel to its end, (2) the initial consonants of the

English word, and (3) "ay". Return the Pig Latin word.

Here are the objects that you need:

Description Type Kind Movement Name

the English word string varying in englishWord

index of the first vowel int varying local vowelPosition

the Pig Latin word
code

string
varying out piglatinWord

portion of the English word from its first

vowel until its end
string varying local lastPart

consonants at the beginning of the

English word
string varying local firstPart

"yay" string constant local --

"ay" string constant local --

This gives us the following specification for our function:

Specification:

receive: englishWord, a string.

precondition: englishWord should have at least one vowel in it.

return: piglatinWord, a string.

Since this method could be useful in many places (okay, just a bit of a stretch there), we'll use

a library. Use the specification to create a prototype for a function

named EnglishToPigLatin() in piglatin.h; copy the prototype into the

documentation file; and then add a stub for the same function in piglatin.cpp.

The rest of the design is up to you:

Question #5.4: Write out a chart outlining the operations you need for the Pig Latin

translator.

Question #5.5: Write an algorithm for the Pig Latin translator.

Plural Nouns (Again)

Coding

We can code up our algorithm for the "pluralizing" algorithm like so:

string Pluralize (string singularNoun)

{

 int lastCharIndex = singularNoun.size() - 1;

 char lastChar = singularNoun[lastCharIndex];

 if ((lastChar == 's') || (lastChar == 'x'))

 return singularNoun + "es";

 else if (lastChar == 'y')

 {

 string base = singularNoun.substr (0, lastCharIndex);

 return base + "ies";

 }

 else

 return singularNoun + "s";

}

Spend some time comparing the algorithm to the code.

Question #5.6: How much time did you spend comparing the algorithm and the code?

It wasn't enough time. Spend some more time.

Now let's break this down:

Step 1 is done automatically through the parameter passing mechanism.

Step 2 uses the size() method to get the index of the last character. Step 3 uses this index to

get the last character of singularNoun.

Step 4 is a multi-branch if statement. The conditions of the ifs compare two chars. When

we figure out what rule we need to apply, each rule results in a string concatenation. Two of

those are quite simple, but the second one deserves a closer examination.

Recall that the substr() method needs a beginning index and a size of the substring. The

beginning index is easy: since we want everything but the last character (which is a 'y' we're

discarding), we need to start at index 0. It doesn't matter what's in singularNoun or how

long it is, a string always begins at index 0.

But how long is this substring? lastCharIndex is the index of the last character. That's the

character we need to avoid, so for our substring, the previous character is the last character of

our substring. That previous character has index lastCharIndex-1. Using the formula

above, we come up with:

substrsize = (lastCharIndex-1) - 0 + 1 = lastCharIndex

This explains why lastCharIndex is doing double duty as a index

into singularNoun and as a size for the substring.

Go back one more time to compare the algorithm and the code. There's supposed to be little

thought going from the algorithm to the code. You'll struggle with the syntax, but you don't

have to get too creative. The double use of lastCharIndex is a bit tricky, but otherwise the

two match up very well.

Pig Latin Translator (Again)

Coding

The trickiest operation you'll have to worry about is finding the first vowel in a word. Unlike

the noun pluralizer, you cannot test a fixed position with the index operator. You have to search

for it. However, read the list of operations above carefully because one of those methods

(probably the one we didn't use in the pluralizer---hint! hint! hint!) will mostly solve the

problem for you.

Then, extract substrings from the English word to build up the Pig Latin word. Remember to

use the formula above to compute the size of a substring.

Code up your algorithm, compile, and run your program.

Testing

Test your Pig Latin translator on all of the words listed above plus others that you come up

with.

Maintenance

As you test your function, you'll discover that your function doesn't work on all words. (This

should teach you to read the entire lab before working on it!) In particular, your function has

problems with words that start with 'y' (like "yellow") or that contain a 'q' in the initial

consonants (like "quiet" or "squire").

Words beginning with 'y' pose a problem because we consider 'y' to be a vowel. If we didn't,

words like "style" or "spry" wouldn't translate properly. It appears that we need a special case

for words beginning with 'y' because then it usually works as a consonant. But this new rule

isn't perfect: "Ypsilanti" begins with a 'y' vowel.

Words with a 'q' in the initial consonants also poses a problem because the 'u' after it should

also be moved to the end of the word: "squire" should translate to "iresquay", not "uiresqay".

This requires a special case. We can complicate the special case further if we permit English

words that do not have a 'u' after a 'q'. Strictly speaking, this isn't permitted in English, but many

foreign words absorbed into English have a 'q' without a 'u' right after it.

These are both cases that should be considered for a full-fledged Pig Latin translator, although

we won't do them here. See Project #5.1.

Submit

Turn in a copy of your code, your answers to the questions, and sample runs of your program

demonstrating that it works correctly.

Terminology

class, encapsulate, function member, index, indexed type, instance method, message, method

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab5/homework.html

3. Project 5

Your instructor will assign you one of the problems below. To solve your problem, write a

program that reads the necessary information to compute and output the indicated values, as

efficiently as possible. Following the pattern in the lab exercise, first, design using OCD;

then code your design in C++ using stepwise translation; finally, test your program thoroughly.

Project #5.1: As written, our Piglatin() function fails to correctly translate words such

as yes (esyay) and yellow (ellowyay) in which the first vowel 'y' is actually being used as a

consonant. It also fails to correct translate words such as quiet (ietquay) and quack (ackquay),

in which the first vowel is a 'u' following a 'q'. Redesign the algorithm used by Piglatin() so

that it will correctly translate words like yes, yellow, quiet, quack, and squire without losing the

ability to correctly translate words like style, rhythm, luck, and blue.

Project #5.2: A character string is said to be a palindrome if it reads the same when the order

of its characters is reversed. For example, the following are all palindromes:
madam

smada bob adams

able was I ere I saw elba

Write a function that, given a character string, returns true if that string is a palindrome, and

returns false otherwise.

Project #5.3: A (very) simple encryption method is to reverse the order of the characters in a

word, so that if the characters in the message
OEMOR OEMOR EROFEREHW TRA UOHT

are reversed word-by-word, then the decoded message reads:
ROMEO ROMEO WHEREFORE ART THOU

Write a function that, given a character string, returns the reverse of that character string.

Project #5.4: Internet mailers and news-readers often contain a "rot13" function that can be

used to "encrypt" words by rotating their characters 13 positions (i.e., A becomes N, B becomes

O, C becomes P, ... Z becomes M). This is convenient, because the same function can be used

to both "encrypt" and "decrypt" a word:
rot13("ROMEO") == "EBZRB"

and
rot13("EBZRB") == "ROMEO"

Write a Rot13() function that, given a string, returns a string whose characters are those of

the first string rotated 13 positions. (Hint: You may find the % operator to be useful.)

Turn In

Turn the following things:

1. Your OCD.

2. Your source program.

3. The output from an execution of your program.

Experiment 6: Selection

1. Objective of the Experiment

➢ To review selective execution.

➢ To learn the switch statement.

➢ To practice writing functions that use selection statements.

2. Theoretical Background

Introduction

One of the easiest ways to make a program user-friendly is to make it menu driven. That is,

rather than prompting the user in some vague sort of way, we present them with a menu of the

choices available to them. Then all the user has to do is look at the menu and choose one of the

choices. Since the menu always tells the user what their options are, the user needs no special

knowledge, making such a program easy to use.

For example, a simple 4-function calculator program might prompt the user by providing the

following menu:

Please enter:

 + to add two numbers.

 - to subtract two numbers.

 * to multiple two numbers.

 / to divide two numbers.

Thanks to the menu, a user knows exactly what to enter.

This lab's exercise is to complete such a program, and at the same time learn about some of the

C++ control structures for selection.

Old Code

Let's first take a look at some old code. In the previous lab, we looked at this function:

string pluralize (string singularNoun)

{

 int lastCharIndex = singularNoun.size() - 1;

 char lastChar = singularNoun[lastCharIndex];

 if ((lastChar == 's') || (lastChar == 'x'))

 return singularNoun + "es";

 else if (lastChar == 'y')

 {

 string base = singularNoun.substr (0, lastCharIndex);

 return base + "ies";

 }

 else

 return singularNoun + "s";

}

This function used a multi-branch if to decide which rule to apply in making the noun plural.

General if Statement

The general pattern for an if statement looks like this:

if (Condition)

 Statement1

[else

 Statement2]

Either Statement1 or Statement2, but not both, are executed based on the value

of Condition. If Condition is true, then Statement1 is executed; otherwise

(i.e., Condition is false), Statement2 is executed.

The square brackets [...] in the pattern indicates that the else clause is optional.

Sometimes a simple if, without an else, is all we need.

Multi-branch if Statement

We can also chain several ifs together into one statement. Now generally it's not advisable to

put an if statement in as Statement1 of another if. These can get confusing. However,

using an if statement for Statement2 is perfectly acceptable---encouraged, even. In

general, a multi-branch if looks like this:

if (Condition1)

 Statement1

else if (Condition2)

 Statement2

...

else if (ConditionN)

 StatementN

else

 StatementN+1

Consider the pluralizer above. There are four possibilities for the singular noun: it ends in an

's', it ends in an 'x', it ends in a 'y', or it ends in something else. This chain of rules/conditions

leads to a chain of ifs.

Exactly one of the StatementI will be executed. It will be the first

StatementI where ConditionI is true. All of the previous conditions must be false. If

all conditions fail, then the fail-safe StatementN+1 is executed. This is exactly what we want

and need for the pluralizer; you'll also need it for the code in this lab.

Helpful hint: Include a fail-safe else in a multibranch if, even if it's just a debugging

statement.

The debugging statement can be as simple as a statement that prints an error message like "This

statement should not print". This will make things much easier for you to debug your program

when (not if) something goes wrong.

Also, there is no condition after the last else.

Helpful hint: The last else in any if statement should not have a condition test.

When any else clause is triggered, we know that the previous test failed, so there's no need to

make a further test. For example, we could write:

if ((lastChar == 's') || (lastChar == 'x'))

 return singularNoun + "es";

else if ((lastChar != 's') && (lastChar != 'x') && (lastChar

== 'y'))

{

 string base = singularNoun.substr (0, lastCharIndex);

 return base + "ies";

}

else if ((lastChar != 's') && (lastChar != 'x') && (lastChar

!= 'y'))

 return singularNoun + "s";

But the extra tests in this version are completely unnecessary. When any of the != tests are

evaluated in this new multi-branch if, they will always be true because they only

made after the corresponding == tests were discovered false. This is why the original version

of pluralize() does not have these unnecessary != tests.

Compound Statements

The patterns above for the if and multi-branch if statements were carefully crafted. In

particular, we used the singular "Statement", not "Statements". We can put

only one statement in those places in the patterns.

What if we need more than one statement? Well, that's exactly what we needed with the second

rule for pluralizing a word which involves two statements. C++ allows us to wrap several

statements in curly braces and treat them as one:

{

 Statement1

 Statement2

 ...

 StatementN

}

So that's why there are those curly braces around the two statements for the second rule. If we

dropped them, then the compiler would get confused over the last else since there isn't a

corresponding if close enough for it.

Files

Directory: lab6

• calculate.cpp implements the driver.

• mathops.h, mathops.cpp, and mathops.doc implement a math library.

Create the specified directory, and copy the files above into the new directory. Only gcc users

need a makefile; all others should create a project and add all of the .cpp files to it.

Add your name, date, and purpose to the opening documentation of the code and documentation

files; if you're modifying and adding to the code written by someone else, add your data as part

of the file's modification history.

Looking at the Code

Take a few moments to study calculate.cpp, particularly the code in the main() routine.

Make sure you understand the purpose of each statement in calculate.cpp before going

any further in this lab.

Ignoring its error-checking code, main() should behave like so:

Our program should display on the screen a greeting, followed by a menu of permissible

operations. It should then read a user-specified operation from the keyboard. It should then

prompt the user for the two operands for that operation, and then read those operands from the

keyboard. It should then compute the result of applying the user-specified operation to the

two operands. It should conclude by displaying that result on the screen, with appropriate

labeling.

All of this behavior is coded up in main() expect for the sentence written in boldface. Since

there is no predefined C++ capability to directly perform that operation, we will write a

function apply() to do that action. This function is (arguably) useful beyond just this

program, so we'll put it off in a library.

Function Design

As usual, we use object-centered design to develop this function.

Behavior. Our function must apply operation to op1 and op2 and return the result. We

can describe the needed behavior as follows:

Our function should receive from its caller an operation, and two operands. If the operation

is '+', our function should return the sum of the two operands. If the operation is '-', our

function should return their difference. If the operation is '*', our function should return their

product of the two operands. If the operation is '/', our function should return their quotient.

Objects. From this behavioral description, we can identify the following objects:

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab6/calculate.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab6/mathops.h
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab6/mathops.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab6/mathops.doc

Description Type Kind Movement Name

The operation char varying received operation

One of the operands double varying received op1

The other operand double varying received op2

The sum of the operands double varying out op1 + op2

The difference of the operands double varying out op1 - op2

The product of the operands double varying out op1 * op2

The quotient of the operands double varying out op1 / op2

From this list, we can specify the behavior of our function as follows:

Specification:

receive: operation, a char; op1 and op2, two double values.

return: the double result of applying operation to op1 and op2.

Please, please, please save yourself much pain and watch the name of the first parameter:

Helpful hint: Do not name the first parameter operator. It's a keyword, and the compiler

may not give you the best error messages if you do use it as a variable.

Using the specification (and heeding the hint), add a prototype for a function

named apply() in mathops.h and a stub in mathops.cpp.

Function Operations From our behavioral description, we have these operations:

Description Predefined? Name Library

Receive operation (a char) yes
function call

mechanism
built-in

Receive op1 (a double) yes
function call

mechanism
built-in

Receive op2 (a double) yes
function call

mechanism
built-in

Return the... yes return built-in

...sum of op1 and op2 yes + built-in

...difference of op1 and op2 yes - built-in

...product of op1 and op2 yes * built-in

...quotient of op1 and op2 yes / built-in

Do exactly one of math operations yes if statement built-in

C++ provides facilities for performing each of these operations as noted in this chart. The last

operation is different from the others, in that it requires selective behavior. We can use

the if statement.

Function Algorithm. We can organize these operations into the following algorithm:

1. Receive operation, op1 and op2.

2. If operation is '+':

 Return op1 + op2.

Otherwise, if operation is '-':

 Return op1 - op2.

Otherwise, if operation is '*':

 Return op1 * op2.

Otherwise, if operation is '/':

 Return op1 / op2.

Otherwise,

 Print an error message and return 0.

From this algorithm it is clear that a multi-branch if will do the trick. The last case is

technically unnecessary since our program checks the operation, but as noted above you

shouldn't rely on that. Print out an error message here so that it's very clear that something went

wrong. If you want, you can even quit the program (with exit(1);) instead of returning 0,

which is merely an arbitrary value in this case.

Add a multi-branch if to your apply() stub to encode this step.

Testing and Debugging.

When you are done, compile everything and test your program. Fix it up until it works correctly.

Be sure to test each operator at least twice.

Coding 2: The switch Statement

The multi-branch if suffers from one drawback:

• To perform the addition operation, one condition is evaluated: (operation == '+').

• To perform subtraction, two conditions are

evaluated: (operation == '+') and (operation == '-').

• To perform multiplication, three conditions must be

evaluated: (operation == '+'), (operation == '-'),

and (operation == '*').

• And so on...

In general, selecting Statementi using a multi-branch if statement requires the evaluation

of i conditions. This can be good because we can assume that the failed test did, in fact, fail.

When testing for ranges of values, this is incredibly useful (and even necessary).

On the other hand, the evaluation of each condition consumes time, statements that occur later

in the multi-branch if statement take longer to execute than do statements that occur earlier. It

would be great if we could avoid this if at all possible. One possibility is using

a switch statement.

A switch statement looks like this:

switch (ConstantExpression)

{

CaseList1

 StatementList1

CaseList2

 StatementList2

...

CaseListN

 StatementListN

default:

 StatementListN+1

}

ConstantExpression is any C++ expression that evaluates to a integer-compatible

constant. Each StatementListi is a sequence of valid C++ statements.

Each CaseListi is one or more cases of the form:

case Constant :

Constant is an integer-compatible constant.

That's a fair bit of code. Watch the careful use of terminology here, particularly "integer-

compatible constant". Let's first figure out what a switch statement does:

1. The ConstantExpression is evaluated.

2. If the value of the expression is present in CaseListI, then

execution begins in StatementListI and proceeds, until a break statement,

a return statement, or the end of the switch statement is encountered.

3. If the value of ConstantExpression is not present in any CaseListI, then the

(optional) default StatementListN+1 is executed.

A given Constant can appear in only one CaseListi.

Helpful hint: Just as a multi-branch if should always have a fail-safe else clause, you

should always have a default case in a switch statement, even if it just prints an error

message.

Perhaps the trickiest thing about a switch statement is the purpose of the cases. The cases of

the switch statement are merely labels for the compiler to tell it where to start executing code.

Consider this code:

switch (i)

{

case 0:

 cout << "Hi ";

case 1:

 cout << "there, ";

default:

 cout << "people!";

}

Then, if i is 0, this prints

Hi there, people!

The cases tell the compiler where to start executing the code, not when to stop. While this is

useful in some situations, it won't be for us. When I make a noun plural, I want to apply

only one of the rules. When I add two numbers together, I don't also want to multiply them. To

stop executing the code at the end of a statement list, we can the statement list with

a break statement, a return statement, or a call to exit().

We've used returns for returning values from a function. We've also use

the exit() function for stopping the program in case of an error. The break statement is

even simpler:

break;

Helpful hint: The statement list of every case list in a switch statement should end with

a break, a return, or an exit().

So when would we use a switch statement? Whenever we can. Unfortunately, there are a few

restrictions:

• Each case must be a constant.

• The ConstantExpression and the case values must all be integer-compatible.

• Finding a matching case is done only through equality tests.

The integer-compatible data types in C++ include int (of course), char, and bool. It does

not include double or string. That's very important, so maybe you should read it again,

this time out loud: "integer-compatible" does not include double or string.

Consider the chart below. If we write the algorithm on the left, we can use the switch in the

middle which is equivalent to the multi-branch if on the right:

Set Variable to

ConstantExpression.

If (Variable is

equal to Value1)

then

 StatementList1

Else if (Variable is

equal to Value2)

then

 StatementList2

...

switch

(ConstantExpression)

{

case Value1:

 StatementList1

 break;

case Value2:

 StatementList2

 break;

...

case ValueN:

 StatementListN

 break;

Variable =

ConstantExpression;

if (Variable ==

Value1)

{

 StatementList1

}

else if (Variable

== Value2)

{

 StatementList2

}

...

Else if (Variable is

equal to ValueN)

then

 StatementListN

Else

 StatementListN+1

End if.

default:

 StatementListN+1

}

else if (Variable

== ValueN)

{

 StatementListN

}

else

{

 StatementListN+1

}

A switch statement is more efficient than the multi-branch if statement because

a switch statement can select StatementListI in the time it takes to evaluate one

condition. The switch statement thus eliminates the non-uniform execution time of

statements controlled by a multi-branch if statement. But since the switch statement has so

many restrictions on it, we use it only occasionally.

We have a slight wrinkle with pluralize() because it's first test actually tests two things.

However, both tests are equality tests with constants and one variable. We can use two cases

for one statement list in a switch statement.

So we could rewrite pluralize() like so:

string pluralize (string singularNoun)

{

 int lastCharIndex = singularNoun.size() - 1;

 char lastChar = singularNoun[lastCharIndex];

 switch (lastChar)

 {

 case 's':

 case 'x':

 return singularNoun + "es";

 case 'y':

 string base = singularNoun.substr (0, lastCharIndex);

 return base + "ies";

 default:

 return singularNoun + "s";

 }

}

We're careful in this code to end each statement list with a return. Each case has an integer-

compatible (i.e., char) constant.

Try it out for yourself,

1. Copy the multi-branch if version of apply() so that you have two copies of it in the

same file.

2. Rename one of them to be apply2().

3. Now replace the multi-branch if in apply() with an equivalent switch statement.

(Leave apply2() alone.)

Translate and test what you have written.

When everything is working right, save your work and print a hard copy of your code.

Submit

Turn in your code and sample runs that proves your calculator works for all operations.

Terminology

case, control structure, integer-compatible constant, menu, menu driven, selection, selective

behavior

3. Project 6

Your instructor will assign you one of the problems below. To solve your problem, write a

program that reads the necessary information to compute and output the indicated values, as

efficiently as possible. Following the pattern in the lab exercise, first, design using OCD;

then code your design in C++ using stepwise translation; finally, test your program thoroughly.

Project #6.1: There are three possible sources of user error in calculate.cpp:

1. The user could enter an invalid operation (something other than +, -, * or /).

2. The user could enter a non-numeric value for op1 or op2.

3. The user could enter / for operation and 0 for op2 (i.e., a divide-by-zero error).

Our program uses assert() to guard against these errors, but the diagnostic message

displayed by assert() is not particularly informative or user-friendly. Replace each of the

calls to assert() in calculate.cpp with a selective-behavior statement that displays a

more user-friendly diagnostic message and terminates the program

(using exit() from cstdlib) if the user enters erroneous information.

Project #6.2: Write a menu-driven "police sketch artist" program. The program should use four

different menus for:

• hairstyle (e.g., bald, crew-cut, curley, wearing a hat)

• eyes (e.g., beady, bug-eyed, glasses, closed)

• nose (e.g., pug, small, medium, large)

• mouth (e.g., puzzled, smiling, bearded, frowning)

Each menu must provide at least four different choices. Your program should display "sketches"

of the person being described, along the lines of those below (hopefully yours will be even

better!):

 | | \|||||||/

 --------- . . | |

 (| O O |) (|-0-0-|) (| . . |)

 | _\ | | ^ | | > |

 |___/| | --- | |||-|||

 ----- ----- |||||

 |||

Organize your program in such a way that it contains no redundant code. For each of the user's

choices, write a separate function to process that choice.

Project #6.3: A year is a leap year if it is evenly divisible by 4, unless it is divisible by 100, in

which case it must also be divisible by 400. That is, 1996 was a leap year because it is divisible

by 4 and not 100, 1997 was not a leap year because it is not divisible by 4, 2000 was a leap year

because it is divisible by 400, but 2100 will not be a leap year because it is divisible by 100 but

not 400.

Write a LeapYear() function that, given a year, returns true if that year is a leap year, and

returns false otherwise. Then write a driver program that tests your function.

Project #6.4: Using the metric library you created for the project of Lab #4, write a menu-

driven program that permits the user to select one of the metric conversions in the library.

Turn In

Turn the following things:

1. Your OCD.

2. Your source program.

3. The output from an execution of your program.

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab4/homework.html

Experiment 7: Repetition

1. Objective of the Experiment

➢ To practice using boolean expressions.

➢ To learn more about repetitive behavior.

➢ To examine all of the repetition statements of C++.

2. Theoretical Background

Introduction

We have seen that the C++ if statement uses a condition to selectively execute statements. In

addition to facilitating selection, most modern programming languages also use conditions to

permit statements to be executed repeatedly.

Let's consider an example. Suppose we have 2500 words that we want to translate into Pig

Latin---about as many words as this lab exercise. The program we wrote in Lab #5 could do

this, although the englishToPigLatin() function only worked on one word. The key was

that the main driver repeatedly called englishToPigLatin() for each word that the user

typed in. We can use that program to translate all 2500 words, and that's so much easier than

running the program 2500 times or writing 2500 calls to englishToPigLatin().

C++ technically provides three different loops, although we'll have four different uses for them.

These are called the while loop, the do loop, the for loop, and what we call the forever loop.

This lab's exercise is to make a calculator program that has more functionality and is more user-

friendly than the one we wrote in the last exercise.

Files

Directory: lab7

• calculate.cpp is the driver.

• mathops.h, mathops.cpp, and mathops.doc implement a math library.

• menus.h, menus.cpp, and menus.doc implement a library for menus.

Create the specified directory, and copy the files above into the new directory. Only gcc users

need a makefile; all others should create a project and add all of the .cpp files to it.

Add your name, date, and purpose to the opening documentation of the code and documentation

files; if you're modifying and adding to the code written by someone else, add your data as part

of the file's modification history.

The Exponentiation Operation

We will implement xn by writing a function power(), such that a call:

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab7/calculate.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab7/mathops.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab7/mathops.doc
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab7/menus.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab7/menus.doc

power(x, n)

will compute and return x raised to the power n. To simplify our task, we will assume that n is

a nonnegative integer.

You may recall that exponentiation is available in C++ via the function pow() in

the cmath library. Just for this lab, we will not use pow() so that we can try to implement it

with loops.

Function Design

As usual, we begin by using object-centered design to carefully design an exponentiation

function. However, before we can describe its behavior, some simple analysis may shed light

on what our function must do.

Function Analysis. When faced with a new problem, it is often helpful to solve it by hand

first. For example, to

calculate power(2,0), power(2,1), power(2,3) and power(2,4) by hand, we

might write out expressions for these computations:

power(2,0) = 1

power(2,1) = 2

power(2,2) = 2 * 2

power(2,3) = 2 * 2 * 2

power(2,4) = 2 * 2 * 2 * 2

The first case defines our starting point. The other cases make explicit what we already

know: n tells us how many times we need to use x as factor. How do you know we have enough

factors? You count them! Now if we could only count in our programs...

Function Behavior. We can describe what we want to happen as follows:

Our function should receive a base value and an exponent value from the caller of the function.

It should initialize result to one, and then repeatedly multiple result by the base value,

with the number of repetitions being the exponent value. Our function should then

return result.

Function Objects. From our behavioral description, we can identify the following objects:

Description Type Kind Movement Name

The base value double varying received base

The exponent value int varying received exponent

The result value double varying returned result

From this, we can specify the task of our function as follows:

Specification:

receive: base, a double; exponent, an int.

precondition: exponent is non-negative

return: result, a double

While we could worry about negative exponents, we choose not to since it would require a bit

more work. We also won't test this precondition since our specification makes it quite clear that

we aren't coding for this; we've given other programmers fair notice of our assumption. Our

function will simply return 1, as if the exponent were 0.

Using this specification, go to mathops.h and mathops.cpp and replace the appropriate

lines with a prototype and a stub for power(). Then, uncomment the call

to power() within apply(). Finally, compile the code and fix your errors.

The call to power() in apply() uses int() to convert the double argument op2 to an

integer. Without this conversion, our attempt to pass a double argument into

an int parameter would result in a compilation error.

Function Operations. From our behavioral description, we have the following operations:

Description Predefined? Name Library

Receive base and exponent yes parameter built-in

Initialize result to 1.0 yes declaration built-in

Set result to result*base yes *= built-in

Repeat *= exponent times yes for loop built-in

Return result yes return built-in

Function Algorithm. We can organize these operations into the following algorithm:

1. Receive base and exponent from caller.

2. Initialize result to 1.0.

3. For each count from 1 to exponent:

 result *= base.

4. Return result.

Coding

The C++ for loop is designed to facilitate the counting behavior required by step 2. The pattern

for the counting for loop is:

for (Type Var = Start; Var <= Stop; Var++)

 Statement

where Type is a C++ numeric type, Var is the loop control variable used to do the

counting, Start is the first value, and Stop is the last value.

For example, if we wanted to print x 20 times, here's the algorithm and the code:

1. For each i from 1 to 20:

a. Display x.
for (int i = 1; i <= 20; i++)

 cout << x;

Compare the algorithm and code, then using the pattern and the example, complete

the power() function. Read the algorithm carefully. There are several variables that you have

to create and use in writing your loop, so read the algorithm carefully. Remember that you

aren't supposed to invent new things with your code; just translate the algorithm above.

When you've written the code, compile and test your program. Test exponentiation

on several values. Make sure you test 0 as an exponent. Try values larger than 2 and 3 as both

bases and exponents.

Characterizing Loops

The pattern for a C++ for loop is actually more general:

for (InitializationExpr; Condition; StepExpr)

 Statement

where InitializationExpr is any initialization expression, Condition is any boolean

expression, and StepExpr is an arbitrary expression.

If for some reason we wanted to count downwards and output the multiples of 12 from 1200 to

12, then we'd have this algorithm and code:

1. For each i from 100 down to 1:

a. Display 12 * i.
for (int i = 100; i >= 1; i--)

 cout << 12 * i << endl;

The Condition controls the loop. As long as it is true when it is tested, then the

loop Statement is executed. C++ for loops are controlled by conditions, just

as if statements are controlled by conditions. As we shall see, each of the other C++ loop

statements are also controlled by conditions.

A loop is categorized by when it evaluates its condition:

1. A pretest loop evaluates its condition before its statements.

2. A posttest loop evaluates its condition after its statements.

3. An unrestricted loop evaluates its condition whenever you like.

The for loop is a pretest loop, because it evaluates its condition before the loop's statement is

executed. You can prove it to yourself: power() should return 1 if the exponent is 0 (which

you know since you tested this above). The only way this happens is if the loop

in power() does not execute its statement; if the statement did execute, then the value

returned wouldn't be 1.

The for loop is designed primarily for problems that involve counting through ranges of

numbers, or problems in which the number of repetitions can be determined in advance. Many

problems need other types of repetition.

The other three C++ loops differ from the for loop in that they are general-purpose loops,

designed for problems where the number of repetitions is not known in advance.

1. The C++ while loop provides a general pretest loop.

2. The C++ do loop provides a general posttest loop.

3. The C++ forever loop provides a general unrestricted loop.

Let's try out these loops to handle our menu input.

Getting a Valid Menu Choice

getMenuChoice() is defined in menus.cpp.

char getMenuChoice(const string MENU)

{

 cout << MENU;

 char choice;

 cin >> choice;

 return choice;

}

What happens if the user types in a bad value? Try it out.

We can be more user-friendly by handling the input errors in this function.

One way to handle such errors is to repeatedly display the menu and input the user's choice, so

long as they continue to enter invalid menu choices. This isn't something we can predict since

we have no idea how many times the user will enter in bad data.

The general-purpose loops give us a way to handle user errors, but we must decide which one

to use. We can begin by writing a partial algorithm for this problem using

a generic Loop statement, in which we don't worry (for the moment) how control will leave

the loop:

1. Loop:

a. Display MENU.

b. Read choice.

End loop.

2. Return choice.

We've looked at how conditions are used in if and for statements. The other loops work quite

similar to the for loop. There are two types of conditions we have to work with.

• A continuation condition defines the circumstances under which we want repetition to

continue. "When do I keep on going?"

• A termination condition defines the circumstances under which repetition should

terminate. "When do I stop?"

The loop we use will determine what type of condition we need. When we switch from one

loop to another, we might have to switch the type of condition. Rethinking the logic isn't too

tricky.

For our problem, we want the repetition

• to continue so long as choice is an invalid menu choice, and

• to terminate when choice is a valid menu choice.

Since choice is not known until after Step (b), it seems logical to see if we're done after that

step, which we can describe using our termination condition as follows:

1. Loop:

a. Display MENU.

b. Read choice.

c. If choice is a valid menu choice, exit the loop.

End loop.

2. Return choice.

In this algorithm, it is apparent that the controlling condition is evaluated at the bottom of the

loop, which implies that a post-test loop is the appropriate loop to choose.

In C++, the post-test loop is called the do loop, and its pattern is as follows:

do

{

 Statements

}

while (Condition);

When execution reaches such a loop, the following actions occur:

1. Statements execute.

2. Condition is evaluated.

3. If Condition is true, control returns to step 1; otherwise, control proceeds to the next

statement after the loop.

Since repetition continues so long as the condition is true, a do loop uses a continuation

condition.

Since its Condition is not evaluated until after the first execution of Statements,

the do loop guarantees that Statements will be executed one or more times. For this reason,

the do loop is said to exhibit one-trip behavior: we must make at least one trip

through Statements.

The notion of a "valid" menu choice is a bit tricky. One way to handle it is to require that the

valid menu choices be consecutive letters of the alphabet (e.g., 'a' through 'e'). If we then

pass the first and last valid choices to getMenuChoice() as arguments:

char operation = getMenuChoice(MENU, 'a', 'e');

and add parameters to the function prototype and definition to store these arguments:
char getMenuChoice(const string MENU, char firstChoice, char

lastChoice);

Add the new arguments to the function call in the driver. Add the new parameters to the

prototype and the function itself. You can recompile the code to make sure the compiler is

happy with your changes, but the program won't run any differently yet.

Since firstChoice and lastChoice will define the range of valid choices, we can

express our loop's continuation condition in terms of those values: choice is invalid if and

only if

choice < firstChoice || choice > lastChoice

We are then ready to add a do loop to the function to implement our algorithm.

Code it up. Here are the pieces we need for the do loop:

• The Statements are the output of MENU and the input of choice.

• The Condition is in the previous paragraph.

• We'll have to declare choice outside the loop so that it can be returned outside the loop.

Compile and test your code.

Getting Valid Numeric Input

Another potential source of error occurs when our program reads values for op1 and op2 from

the keyboard -- the user might enter some non-numeric value. Our current version checks for

this using the assert() mechanism and the good() method of cin.

But suppose we wished to give the user another chance to enter valid values, instead of just

terminating the program (which seems terribly drastic)? At first glance, it looks like we could

use the same approach as before, by replacing the assert() with a posttest loop that repeats

the steps so long as good() returns false:

do

{

// prompt for op1 and op2

// input op1 and op2

}

while (!cin.good());

However, this approach is inappropriate because of two subtleties about cin input

(actually, istream input in general). When the >> operator is expecting a real value, but gets

a non-real value, two things happen, each of which causes a difficulty:

1. The internal status of cin is set so that its method good() will return false. No input

operations can be performed with cin so long as cin.good() returns false.

2. After failed input, the bad input value is left (unread) in the input stream.

The first problem can be fixed with cin.clear(), which resets the status of cin so

that cin.good() returns true again.

The second problem takes some more work. We don't want the loop to continue reading the

same bad value over and over and over again. We need some way to skip over the bad input.

This can be accomplished using the ignore() method:

cin.ignore(NumChars, UntilChar);

Characters in cin will be skipped until NumChars have been skipped or until the

character UntilChar is encountered, whichever comes first. Since lines are usually not more

than 120 characters in length, and the end of a line of input is marked by the newline character

('\n'), we can use the following call to solve this difficulty:
cin.ignore(120, '\n');

All of this complicates our choice of which loop to use, because we now have four steps to

perform:

a. Display a prompt for two real values. [One or more times.]

b. Input op1 and op2. [One or more times.]

c. cin.clear(); [Only if necessary, zero or more times.]

d. cin,ignore(120, '\n'); [Only if necessary, zero or more times.]

It looks like the test should be placed in the middle there. A do loop isn't going to work.

One traditional solution is modify our algorithm to use a pre-test loop in the following way:

a. Display a prompt for two real values.

b. Input op1 and op2.

c. Loop so long as cin.good() is false:

i. cin.clear();

ii. cin.ignore(120, '\n');

iii. Display a prompt for two real values.

iv. Input op1 and op2.

End loop.

The drawback to this approach is its redundancy: the prompt and input steps are written twice.

This is not too much of an inefficiency, so long as one does not mind the extra typing. In the

final part of this exercise, we will see a way to avoid this redundancy.

The C++ pretest loop is called the while loop:

while (Condition)

 Statement

As usual, Condition is any C++ Boolean expression, and Statement can be either a single

or compound C++ statement. Statement is often referred to as the body of the loop.

This works just like a do loop except that Condition is evaluated before the Statement is

evaluated. If Condition is false right away, Statement is never executed. For this reason,

a while loop is said to exhibit zero-trip behavior: we might make zero trips

through Statement.

Add a while loop to encode our modified algorithm. The condition !cin.good() can be

used to control the while loop. Since the while loop must repeat multiple statements,

its Statement must be a compound statement or bad things will result.

Compile and thoroughly test what you have written. Continue when what you have written

makes the entry of numeric values fool-proof.

One Execution, Multiple Calculations

The algorithm that our program is using is basically as follows:

1. Display a greeting.

2. Display a menu of operations and read operation, guaranteed to be a valid menu

operation.

3. Display a prompt for two real values.

4. Read op1 and op2.

5. Loop (pretest), so long as a real value was not entered:

a. Clear the status of cin.

b. Skip the invalid input.

c. Display a prompt for two real values.

d. Input Op1 and Op2.

End loop.

6. Compute result by applying operation to op1 and op2.

7. Display result.

Using this algorithm, we have to re-run our program for every calculation, which is

inconvenient for the user. A more convenient calculator would wrap some of the statements in

a loop, so that the user could perform multiple calculations without having to re-run the

program.

To add the loop, we modify our algorithm:

1. Display a greeting.

2. Loop:

a. Display a menu of operations and read operation, guaranteed to be a valid

menu operation.

b. Display a prompt for two real values.

c. Read op1 and op2.

d. Loop so long as a real value was not entered:

i. Clear the status of cin.

ii. Skip the invalid input.

iii. Display a prompt for two real values.

iv. Input op1 and op2.

End loop.

e. Compute result by applying operation to op1 and op2.

f. Display result.

End loop.

In order to determine which kind of loop to use, we must determine where to evaluate the loop's

termination condition, which we might express as "the user wants to quit".

One way to have the user indicate that they want to quit is to view quitting as an operation, and

provide an additional menu choice (i.e., 'f') by which the user can indicate that they want to

quit. The condition (operation == 'f') evaluates to true if the user wishes to quit.

So when do we check this condition? The ideal place is to evaluate it as soon as it can be known;

in this case this would be immediately following the input of operation. We thus have a

situation where the loop's condition should not be evaluated at the loop's beginning nor at its

end. It must be evaluated in the middle of the loop.

1. Display a greeting.

2. Loop:

a. Display a menu of operations and read operation, guaranteed to be a valid

menu operation.

b. If operation is quit, exit the loop.

c. Display a prompt for two real values.

d. Read op1 and op2.

e. Loop so long as a real value was not entered:

i. Clear the status of cin.

ii. Skip the invalid input.

iii. Display a prompt for two real values.

iv. Input op1 and op2.

End loop.

f. Compute result by applying operation to op1 and op2.

g. Display result.

End loop.

In C++, the unrestricted loop is a simplification of the for loop that we call the forever loop,

that has the following pattern:

for (;;)

{

 StatementList1

 if (Condition) break;

 StatementList2

}

By leaving out the three expressions that normally control a for loop, it becomes an infinite

loop. Of course, we do not want an infinite number of repetitions, but instead we want execution

to leave the loop when a termination condition becomes true. As shown in the pattern above,

this can be accomplished by placing an if statement that uses a termination condition to control

a break statement within the body of the loop.

When a break statement is executed, execution is immediately transferred out of the forever

loop to the first statement following the loop. By only selecting the break statement

when Condition is true, a forever loop's repetition can be controlled in a manner similar to

the other general-purpose loops.

Modify your source program to incorporate this approach, and then translate and test the newly

added statements.

This loop can also be used for the "valid numeric input" loop that we wrote before. Give it a

try.

Submit

Turn in your code and sample runs of your program to demonstrate that it does everything we

added to it this week. We added a lot of things, including some error handling, so make sure

you test it fully.

Terminology

condition, continuation condition, counting for loop, do loop, forever loop, general-purpose

loop, generic loop, infinite loop, loop body, one-trip behavior, posttest loop, pretestloop,

repeated, selective execution, termination condition, unrestricted loop, zero-trip behavior

3. Project 7

Your instructor will assign you one of the problems below. To solve your problem, write a

program that reads the necessary information to compute and output the indicated values, as

efficiently as possible. Following the pattern in the lab exercise, first, design using OCD;

then code your design in C++ using stepwise translation; finally, test your program thoroughly.

Project #7.1: Write a program that will read a sequence of numbers from the keyboard, and

display the minimum, maximum, average, and range of the entered values. Make the input step

"fool-proof".

Project #7.2: Extend calculate.cpp into a six-function calculator, as follows:

1. Add a factorial() operation that, given an integer n, computes n! = 1 * 2 * ... * (n-1)

* n.

2. Redesign Power() so that it handles negative exponents.

Project #7.3: Write (at least) two ASCII graphics functions:

1. PrintStripe(n, ch); that displays n consecutive ch characters.

(e.g., PrintStripe(5, 'X'); should display XXXXX.)

2. PrintAlternating(n, ch1, ch2); that displays n consecutive pairs of the

characters ch1ch2. (e.g., PrintAlternating(3, 'X', 'Y'); should

display XYXYXY.)

Use these functions to write a program that draws a picture, such as a flag. For example, you

might use these functions to draw a crude facsimile of the U.S. flag that looks like this:

* * * * * * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 * * * * *

* * * * * * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 * * * * *

* * * * * * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 * * * * *

* * * * * * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 * * * * *

* * * * * * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXX

XXX

XXX

Try and draw your picture efficiently (i.e., using loops to minimize the number of statements).

Feel free to create additional "graphics" functions.

Project #7.4: Build a "police sketch artist" program as described in Project #6.2, but write a

dynamic program that lets the user experiment with different combinations of facial parts in a

single execution. Control the program using a loop. Start with a 'blank' face. Allow the user to

modify this face using a two-level hierarchical menu, with the first level allowing the user to

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab6/homework.html

select which facial part they want to modify (i.e., a menu of menus), and the second level

allowing the user to select from among the choices for that particular facial part.

Turn In

Turn the following things:

1. Your OCD.

2. Your source program.

3. The output from an execution of your program.

Experiment 8: Parameter-Passing and Scope

1. Objective of the Experiment

➢ To gain experience using reference parameters.

➢ To practice writing functions.

➢ To understand the rules of scope.

2. Theoretical Background

Introduction

This lab's exercise involves a series of experiments that investigate some of the features and

restrictions of C++ functions that we have glossed over until now. The experiments are divided

into two categories:

1. Parameters. In the first part, we will begin by exploring the nature of function parameters,

and what rules govern the relationship between parameters and their arguments. We will

also examine the different kinds of parameters available in C++.

2. Scope. In the second part, we will examine the relationship between definitions that appear

in different functions, and some of the rules of scope in C++.

There is a different page for each experiment which requires you to write out answers for your

work. Write, or better yet type, your answers up and hand them in to your instructor. Your

instructor may also want you to hand in your program after each experiment.

Experiments

Each experiment for this lab starts out with an issue and a hypothesis about the issue. Your

work will be to prove or disprove the hypothesis.

Did you catch that, "prove or disprove"? The hypothesis might be wrong.

Files

Directory: lab8

• params.cpp is our playground for the experiments in this lab exercise.

Create the specified directory, and copy the files above into the new directory. Only gcc users

need a makefile; all others should create a project and add all of the .cpp files to it.

Add your name, date, and purpose to the opening documentation of the code and documentation

files; if you're modifying and adding to the code written by someone else, add your data as part

of the file's modification history.

a) Part I: Parameter-Passing Mechanisms

The general form of a C++ function heading is:

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab8/params.cpp

ReturnType Name (ParameterDeclarationList)

where ParameterDeclarationList is an optional sequence of one or

more ParameterDeclarations separated by commas, each of which has the form:
Type ParameterName

where Type is a valid type, and ParameterName is a valid identifier.

We've used this in both the prototype and definition of our functions.

Terminology

1. A value parameter is a parameter whose Type is not followed by an ampersand (&). A

value parameter is a variable that is local to the function; when the function is called, it

receives a copy of the value of the corresponding argument.

2. A reference parameter is parameter whose Type is followed by an ampersand (&).

(Technically, the ampersand is part of the type.) A reference parameter is an alias (e.g.,

another name) for its corresponding argument.

Question #8.1: We have used parameters in several of our programs. In every case, which

kind did we use?

Using your editor, take a moment to look over the program in params.cpp. Its behavior

consists of 3 steps:

1. Initialize a set of variables to some initial value (-1 in this case).

2. Call function change() that tries to modify the values of those variables.

3. Output the values of those variables to view the effects of function change().

The function change() is the "laboratory" in which we will experiment with parameters. The

key word above is "tries". change() tries to alter the variables in main() through its

parameters, but it's not always successful.

b) Part 2: Scope in C++

A declaration can be thought of as giving the compiler a meaning for the name being declared.

Think about this for a moment. In Experiment #3, we saw that the name arg1 can be declared

twice: once as an integer variable in the main program, and a second time as an integer value

parameter in change(). We also saw that when arg1 is a value parameter, altering it

in change() leaves the value of arg1 in the main program unchanged. We might conclude

from this that arg1 in main and arg1 in change() are two different variables.

Put differently, the same name can have different meanings in different places in a program.

There is nothing that prevents us from declaring any variable as an integer in main and then

redeclaring that variable with the same name as a real number in change(). The same name

will have one meaning when execution is in main, and an different meaning when execution

is in change().

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab8/experiment3.html

Keep in mind that a compiler hates ambiguity. It cannot tolerant confusion. So there must be

some underlying rules that keep the two declarations separate. These rules are known as the

"rules of scope".

Definition: The set of all places in a program where a name has a particular meaning is called

the scope of that name.

The (Simplified) C++ Rules of Scope

The basic rules governing the scope of C++ names can be summarized as follows:

1. Local block scope. The scope of any name declared within a block starts at its declaration

and ends at the close-brace (i.e., }) of the block. The variable is defined in any of the code

that appears in the program text between its declaration and the closing brace (including

nested compound statements). These variables are called "local" because they automatically

come into existence whenever execution enters the surrounding braces.

2. Local parameter scope. The scope of a parameter starts at its declaration and ends at the

function's close brace. Parameters are also local because their scope covers only a local area

of the code.

3. for-loop scope. A variable declared in the initialization expression of a for loop is local

to just the for loop.

4. Non-local scope. There are many other types of scope that we'll just label as "non-local".

In particular, the scope of a variable declared outside any curly-brace blocks lasts from the

variable's declaration to the end of the file.

C++ classes have their own rules of scope, which we will examine in a later exercise.

A variable's scope determines when it's valid. So if we try to access a variable outside its scope,

the access is invalid, and the compiler will complain.

3. Sub-Experiments

a) Sub-Experiment 1

Variable Parameters and Identical Argument Names

The Issue: If a value parameter has the same name as its corresponding argument, will altering

the parameter alter the corresponding argument?

Hypothesis: You try this one:

Question #8.3.1: What hypothesis do you want to try to prove? Will the same names make

a difference or not?

The Experiment: Modify the definition of change(), so that its parameter-names match the

argument names:

void change(int arg1, int arg2, int arg3)

{

 arg1 = 1;

 arg2 = 2;

 arg3 = 3;

}

This function is already called in the main program with the statement:

change(arg1, arg2, arg3);

If giving parameters the same names as their arguments is a problem,

compiling params.cpp will produce errors. If the names matter, then we might see a change

in the values in the main program.

Observation: Compile and execute your program.

Question #8.3.2: Were you able to compile your program?

Question #8.3.3: If not, what error message did you get? If you could compile, what did

the program print when you ran it?

Conclusions:

Question #8.3.4: Is your hypothesis correct? How do you know? If it's not correct, what

should it be?

Undo your modifications and then continue.

b) Sub-Experiment 2

Using a Twice-Declared Identifier in Outer Block

Issue: Suppose an identifier has two different declarations, one in an outer block and one in a

nested inner block. If the name is accessed within the outer block, but after the inner block,

which declaration is used?

Hypothesis: The closest definition will be used.

Proximity seemed to work out fine in the last experiment, so why not here?

The Experiment: If we move the statement that displays arg1, we can get an answer to our

question:

int main()

{

 int arg1;

 arg1 = -1;

 ...

 {

 char arg1 = 'A';

 }

 cout << arg1 << endl;

}

Question #8.3.5: If -1 is printed, what does this mean? If A is printed, what does this

mean?

Observation:

Question #8.3.6: What does the program display?

Conclusions:

Question #8.3.7: Is our hypothesis correct? How do you know? If it's not correct, what

should it be?

This calls into question the "proximity" rule of thumb. It's not a matter of which declaration is

seen last. Apparently that one close curly brace makes the difference.

Question #8.3.8: If proximity does not matter for resolving duplication declarations,

what does?

Hint: look at the nesting of the curly braces. Consult the scoping rules for more help.

Submit

Turn in the answers to the questions of the experiments that you run. Your instructor may also

want you to turn in a copy of your program after each experiment.

Terminology

for-loop scope, local block scope, local parameter scope, non-local scope, parameter,

reference parameter, rules of scope, scope, scope, value parameter

3. Project 8

Your instructor will assign you one of the problems below. To solve your problem, write a

program that reads the necessary information to compute and output the indicated values, as

efficiently as possible. Following the pattern in the lab exercise, first, design using OCD;

then code your design in C++ using stepwise translation; finally, test your program thoroughly.

Project #8.1: White water rapids are classified by their gradient (the number of feet per mile

they descend) and their class (a difficulty rating in the range 1-6, with 1 being calm and 6

being unnavigable.) Popular white water rafting trips in Pennsylvania and West Virginia

include the lower Youghiogheny (gradient 15, class 3), the New (gradient 25, class 4), the Cheat

(gradient 35, class 4), and the Upper Youghiogheny (gradient 125, class 5).

Write a menu-drive program that displays a menu of the trips, and displays the gradient and

class of whatever trip the user selects. Your program should include a function that, given the

trip selected by the user, passes back the gradient and class of that trip.

Project #8.2: Write a function Sort3() that, given three integer arguments int1, int2,

and int3, changes the values of those arguments so that their values are in ascending order

(i.e., int1 <= int2 <= int3---looks like a postcondition!). Write a driver program that

demonstrates the correctness of Sort3().

Project #8.3: Your local painting supplies store would like a paint-mixing "expert system."

Write a function that, given a non-primary color (i.e., orange, green, purple) will pass back the

two primary colors that must be mixed to produce that color (i.e., red and yellow must be mixed

to produce orange, yellow and blue to produce green, and blue and red to produce purple). Use

a string object to store a color. Then write a menu-driven program that allows its user to

enter, process and display the solution of as many paint-mixing problems as the user wishes.

Project #8.4: A quadratic equation is an equation of the form
ax2 + bx + c = 0

Write a function that, given the a, b and c values defining a quadratic, passes back the two

roots of that quadratic. To compute the roots, use the quadratic formula:

 -b ± sqrt(b2 - 4ac)

roots = --------------------------

 2a

Your function should check for common errors, such as a == 0 and b2 - 4ac being

negative.

Create a user-friendly driver program that allows its user to compute the roots of an arbitrary

number of quadratic equations.

Turn In

Turn the following things:

1. Your OCD.

2. Your source program.

3. The output from an execution of your program.

Experiment 9: Files and Streams

1. Objective of the Experiment

➢ To learn more about iostream objects.

➢ To learn the fundamentals of file input and output.

➢ To learn about simple encryption techniques.

2. Theoretical Background

Introduction

Throughout this lab manual, we have made extensive use of files---containers on a hard or

floppy disk that can be used to store information for long periods of time. Each source program

that we have written has been stored in a file, and each binary executable program has also been

stored in a file.

Files differ from programs in that a program is a sequence of instructions, and a file is a

container in which data (like program code) can be stored. For example, the word processing

documents that you work on are saved as files. Those files look quite different from the files

that store your programs and from the files that store your executables.

But this begs the question, why can't we read and write data from and to a file like a word

processor? This would be particularly useful for problems where the amount of data to be

processed is so large that interactively entering the data each time the program is executed

becomes inconvenient. If we could only store our data in a file, then we could test our program

many times over without having to retype the data each time.

Let's consider a simple problem.

When many of us were younger, we enjoyed writing secret messages, in which messages were

encoded in such a way as to prevent others from reading them, unless they were in possession

of a secret that enabled them to decode the message. Coded messages of this sort have a long

history. For example, the Caesar cipher (invented, it is said, by Julius Caesar himself) is a

simple way to encoding messages.

For example, consider this message and its encoding:

Message Encoded

One if by land, two if by sea. Rqh li eb odqg, wzr li eb vhd.

What is the relationship between the letters in the original sentence and those in the encoded

sentence? Hint: compare the "difference" between the corresponding characters in the two

sentences.

This lab's exercise is to use the Caesar cipher to encode and decode messages stored in files.

Files

Directory: lab9

• caesar.h, caesar.cpp, and caesar.doc implement a Caesar encryption function.

• encode.cpp and decode.cpp are the two drivers needed for this lab exercise.

• message.text and alice.code are two sample input files.

Create the specified directory, and copy the files above into the new directory. Only gcc users

need a makefile; all others should create a project and add all of the .cpp files to it.

Add your name, date, and purpose to the opening documentation of the code and documentation

files; if you're modifying and adding to the code written by someone else, add your data as part

of the file's modification history.

An Encoding Program

The first part of this exercise is to write a program that can be used to encode a message that is

stored in a file. The encoded message will then be saved to a second file.

Design

As usual, we will apply object-centered design to solve this problem.

Behavior

Our program should display a greeting and then prompt for and read the name of the input file.

It should then connect an input stream to that file so that we can read from it, and check that the

stream opened correctly. It should then prompt for and read the name of the output file. It should

then connect an output stream to that file so that we can write to it, and check that the stream

opened correctly. For each character in the input file, our program should read the character,

encode it using the Caesar cipher, and output the encoded character to the output file. Our

program should conclude by disconnecting the streams from the files.

This behavior is a bit verbose since we're just learning about files, but it's perhaps better to err

on the verbose side of things rather than on the forgetting side of things. (Programs tend to crash

when you forget to do things.)

Objects. Using this behavioral description, we can identify the following objects:

Description Type Kind Name

a greeting string constant ---

The name of the input file string varying inFile

An input stream ifstream varying inStream

The name of the output file string varying outFile

An output stream ofstream varying outStream

a character from the input file char varying inChar

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab9/caesar.h
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab9/caesar.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab9/caesar.doc
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab9/encode.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab9/decode.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab9/message.text
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab9/alice.code

an encoded character char varying outChar

Using this list of objects, here's our specification:

Specification:

input (inFile): a sequence of unencoded characters.

output (outFile): a sequence of encoded characters.

This list of objects raises an important question that you should think about:

Question #9.1: What is the difference between a file name and a file stream?

One immediate hint: consider the data types. The data type determines the operations you can

perform on an object. You should answer to this question after you've read through this section.

It's an important distinction that, if you understand the difference, you'll save yourself much

heartache when writing and debugging your programs.

Operations. From our behavioral description, we have these operations:

Description Predefined? Name Library

Display a string yes << iostream

Read a string yes >> iostream

Connect an input stream to a file yes ifstream declaration fstream

Connect an output stream to a file yes ofstream declaration fstream

Check... yes assert() cassert

...that a stream opened properly yes is_open() fstream

Read a char from an input stream yes get() fstream

Encode a char using the Caesar cipher yes caesarEncode() caesar

Write a char to an output stream yes << fstream

Repeat input, encoding, and output

operations
yes input loop built-in

Determine when all chars have been

read
yes eof() fstream

Disconnect a stream from a file yes close() fstream

Algorithm. We can organize these operations into the following algorithm:

1. Display a greeting.

2. Prompt for and read inFile, the name of the input file.

3. Create an ifstream named inStream connecting our program to inFile.

4. Check that inStream opened correctly.

5. Prompt for and read outFile, the name of the output file.

6. Create an ofstream named outStream connecting our program to outFile.

7. Check that outStream opened correctly.

8. Loop through the following steps:

a. Read a character from the input file.

b. If the end-of-file was reached, then terminate repetition.

c. Encode the character.

d. Write the encoded character to the output file.

End loop.

9. Close the input and output connections.

10. Display a "successful completion" message.

Coding

This algorithm should be encoded in main() in encode.cpp.

• Steps 1, 2, and 5 are very familiar. Print a prompt, read in a value. The values are

only strings, so nothing new yet.

• The loop is tested in the middle, so we'll use a forever loop (i.e., for(;;)...) with

an if-break to stop the loop.

• Encoding can be done with caesarEncode() from the caesar library.

Write the code for these steps. The if-break statement can wait, but the other steps listed

here are straightforward.

We only have to figure out the file I/O steps.

Opening a Connection to a File. When we want to get input from a file, we have tell the

compiler that's what we want. It's a fairly expensive operation (since data moves much slower

to and from a disk than to and from a computer's main memory). We also have to be precise

about what file we want. We certainly don't want all files on the machine.

So we need to open a connection between the program and a file. A connection is a thing, and

all things in C++ are represented as objects. File connections are known as streams, and there

are two types of streams: ifstream for input file streams and ofstream for output file

streams.

Like any other object, a stream must be declared before it can be used. If inputFileName is

a string object containing the name of an input file, then the declaration

ifstream inFileStream(inputFileName.data());

constructs a stream object named inFileStream as a connection to the file.

The string method data() extracts the actual characters from a string. If your compiler

is not fully ANSI compliant, you may have to use the c_str() method instead. The stream

classes are a bit particular about the strings that they'll accept.

If the file does not exist, bad things happen. More on this later.

Using this information, implement the step of our algorithm that creates and opens a

connection inStream to the input file named inFile.

An output stream is similar:

ofstream outFileStream(outputFileName.data());

This declaration constructs an object named outFileStream as a connection to the file

named outputFileName.

If the file does not exist, then a file by that name is created in the working directory. If the file

does exist, then its contents are erased. An ofstream thus provides a connection to a file so

that we write data to the file.

Using this information, implement the appropriate step of our algorithm by declaring

an ofstream named outStream that serves as a connection between our program and the

file whose name is in outFile.

Libraries. Try compiling your code. Ooops. You should get complaints

about ifstream and ofstream. The answer is in the object chart above: you haven't

included the proper library.

Include the proper library for these identifiers, and then compile your code. Don't run your code

yet because your loop doesn't have a termination test.

Checking that a Connection Opened Correctly. Opening files is an operation that is highly

susceptible to user errors. Suppose the user has accidentally deleted the input file and our

program tries to open a connection to it? What if it never existed in the first place! If

an fstream opens as expected, the operation is said to succeed, but if it does not open as

expected, the operation is said to fail.

To detect the success of an open operation, fstream objects contain an is_open() method:

fileStream.is_open()

which returns true if fileStream is open, and it returns false otherwise.

In an assert(), the is_open() method provides a readable way to perform the checking

steps of our algorithm.

Write the code for these steps. Compile (but again don't execute) your program.

Input from an ifstream. The most important thing about input (and output) is that you

already know how to do it:

Helpful hint: File I/O is done the same way a screen and keyboard I/O.

Just as we have used the >> operator is used to read data from the istream named cin,

the >> operator can be used to read data from an ifstream opened for input. Since

the ifstream connects a file to a program, applying >> to it transfers data from the file to the

program. For this reason, this operation is described as reading from a file, even though we are

actually operating on the ifstream. An expression of the form:

inputFileStream >> VariableName

thus serves to read values from an ifstream named inputFileStream into the

variable VariableName. The type of the value being read must match the type

of VariableName, or the operation will fail.

However, while the input operator is the appropriate operator to solve many problems involving

file input, it is not the appropriate operator for our problem. The reason is that

the >> operator skips leading whitespace characters. That is, if our input were

 One if by land.

 Two if by sea.

and we were to use the >> operator (in a loop) to read each of these characters:

inStream >> inChar;

then all whitespace characters (blanks, tabs and newlines) would be skipped, so that only non-

whitespace characters would be processed, as if the file contained
Oneifbyland.Twoifbysea.

To avoid this problem, ifstream objects contain a get() method:

inputFileStream.get(CharacterVariable);

When execution reaches this statement, the next character, including whitespace characters, is

read from inputFileStream and stored in CharacterVariable.

Use the get() method of the inStream object to perform the char input in the loop. Then

compile your program, and continue when your program compiles without error. Don't run it

yet!

Controlling a File-Input Loop. Files are created by a computer's operating system. When the

operating system creates a file, it marks the end of the file with a special end-of-file mark. Input

operations are then implemented in such a way as to prevent them from reading beyond the

end-of-file mark, since doing so could allow a programmer unauthorized access to the files of

another programmer. The input operations will just keep you at the end-of-file forever until you

realize where you are.

An ifstream object has a method named eof() that can be used to control an input loop:

inputFileStream.eof()

This expression returns true if the last read from inputFileStream tried to read the end-

of-file mark, and it returns false otherwise. We have to read first, then test for end-of-file.

In a forever loop like the one in the source program, the eof() method can be used as our

termination test. By placing an if-break combination:

if (/* end-of-file has been reached */) break;

following the input step, repetition will be terminated when all of the data in the file has been

processed.

In your source program, place an if-break in the appropriate place in our algorithm, using

the eof() method of inStream as the condition in the if statement. Then compile your

source program, to check the syntax of what you have written. When it is syntactically correct,

continue to the next part of the exercise. You probably could run the program now, but it won't

do anything interesting because it's not generating any output.

File Output. Just as we have used the << operator to write data to the ostream named cout,

the << operator can be used to write data to an ofstream opened for output. Since

the ofstream connects a program to a file, applying << to it transfers data from the program

to the file. This operation is thus described as writing to the file, even though it is

an ofstream operation.

The pattern for output should look pretty familiar:

outputFileStream << Value ;

outputFileStream is an ofstream, and Value is value that should be written in the

file.

Use this example as a basis for a statement to finish up the loop, writing the encoded character

(not the original!) to the output file. Compile your program to test the syntax of what you have

written, and fix all of your compilation errors.

Closing Files. Once we are done using an stream to read from or write to a file, we

should close it, to break the connection between our program and the file. This is accomplished

using the method close(). Both the ifstream and ofstream classes have this method:

fileStream.close();

When execution reaches this statement, the program severs its connection to fileStream.

In the appropriate place in the source program, place calls to close() on the input stream and

on the output stream. Then compile your program, and ensure that it is free of syntax errors.

Testing and Debugging

When your program's syntax is correct, test it using the provided file named message.text.

If what you have written is correct, your program should create an output file, containing the

output:

Rqh Li Eb Odqg

Wzr Li Eb Vhd

If this file is not produced, then your program contains a logical error. Retrace your steps,

comparing the statements in your source program to those described in the preceding parts of

the exercise, until you find your error. Or, pretend you're the computer and walk through your

program. Correct your program, recompile it, and retest your program until it performs

correctly.

Applying What We Have Learned

The last part of this exercise is for you to apply what you have learned to the problem

of decoding a file encoded using the Caesar cipher. Complete the skeleton

program decode.cpp, that can be used to decode a message encoded using the Caesar cipher.

Do all that is necessary to get this program operational, so that messages encoded

with encode.cpp can be decoded with decode.cpp. Put differently, the two programs

should complement one another.

The difficult part has been done for you. The caesar library contains

a caesarDecode() function which does all the work of decoding. Your job is to build the

driver to handle file I/O.

To test your program, you can use the output file created by encode.cpp, or alice.code,

a selection from Lewis Carroll's Alice In WonderLand.

Beware! Watch the names of your output files. Every application you've used has probably

warned you when you're about to overwrite an existing file. This is behavior that the program

had to implement. You haven't implemented it in this program, so you won't get this warning.

So if you encode message.text to be message.code, and then you

decode message.code to be message.text, then say goodbye to the

old message.text! The old version will disappear, and you'll have to copy it over again. It's

better to use message.decode, perhaps, when you decode message.code.

Submit

Turn in your code as well as the output from your programs.

Terminology

Caesar cipher, decode, file, reading (from a file), stream, writing (to a file)

3. Project 9

Your instructor will assign you one of the problems below. To solve your problem, write a

program that reads the necessary information to compute and output the indicated values, as

efficiently as possible. Following the pattern in the lab exercise, first, design using OCD;

then code your design in C++ using stepwise translation; finally, test your program thoroughly.

Project #9.1: Write a program that reads from a file of real numbers, and displays

the minimum, maximum, average, and range of the numbers in the file. The user should be able

to enter the name of the input file from the keyboard.

Project #9.2: Write a program that reads the contents of a file and creates an exact copy of the

file, except that each line is numbered. For example, suppose the input file contains the

following text:
'Twas brillig, and the slithy toves

 Did gyre and gimble in the wabe;

All mimsy were the borogoves,

 And the mome raths outgrabe.

 - Lewis Carroll

Then the output file should appear something like this:
1: 'Twas brillig, and the slithy toves

2: Did gyre and gimble in the wabe;

3: All mimsy were the borogoves,

4: And the mome raths outgrabe.

5: - Lewis Carroll

The user should be able to enter the names of the input and output files from the keyboard.

Project #9.3: Using the PigLatin() function we wrote in Exercise #4, write a program that

reads a file of words and translates each word in that file into Pig Latin. The user should be able

enter the names of the input and output files from the keyboard.

Project #9.4: Write a text-analysis program that reads an essay or composition stored in a text

file, and determines the number of words, the number of sentences, the average number of

words per sentence, the average number of letters per word, and a complexity rating, using:
complexity = 0.5 * averageSentenceLength + 0.5 *

averageWordLength

Based on these calculations, your program should assess the writing level of the essay as:

• Grammar School if complexity < 6.

• Junior High if 6 <= complexity < 7.

• High School if 7 <= Complexity < 8.

• College if 8 <= complexity < 9.

• Graduate if complexity >= 9.

The user should be able to enter the name of the input file from the keyboard.

Turn In

Turn the following things:

1. Your OCD.

2. Your source program.

3. The output from an execution of your program.

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab4/exercise.html

Experiment 10: Vectors

1. Objective of the Experiment

➢ To learn to use and process sequences of objects.

➢ To learn how to define and use vectors.

➢ To implement some common vector operations.

2. Theoretical Background

Introduction

In past exercises, we have dealt with sequences of values by processing the values one at a

time. Now we want to examine a new kind of object called a vector that can store not just one

value, but an entire sequence of values. Like a string, a vector is a subscripted object,

meaning the values within it can be accessed via a subscript or index:

The components or "spaces" within a vector in which values can be stored are called the

vector's elements. Unlike strings which only store chars, vectors can be used to store

any type of data.

By storing a sequence of values in a vector, we can design operations for the sequence, and then

implement such operations in a function that receives the entire sequence through a vector

parameter.

Vectors are implemented for us in C++ as the vector class in the vector library which is

part of the C++ Standard Template Library (STL). The STL contains many containers and

algorithms that are useful in many different situations. We'll only explore a very small portion

of the STL in this lab.

The Problem

This lab's exercise is to write a program that processes the names and scores of students in a

course, and assigns letter grades (A, B, C, D or F) based on those scores, curving the grades.

The format of the input file is a series of lines, each having the form:

name score

As usual, we will use object-centered design to design our solution.

Files

Directory: lab10

• DoubleVectorOps.h, DoubleVectorOps.cpp,

and DoubleVectorOps.doc implement various operations for vectors of doubles.

• grades.cpp implements a skeleton driver.

• scores1.data, scores2.data, and scores3.data are sample input files.

• Makefile is a makefile.

Create the specified directory, and copy the files above into the new directory. Only gcc users

need a makefile; all others should create a project and add all of the .cpp files to it.

Add your name, date, and purpose to the opening documentation of the code and documentation

files; if you're modifying and adding to the code written by someone else, add your data as part

of the file's modification history.

Begin by editing the file grades.cpp, and take a few moments to look it over. As indicated

by its documentation, grades.cpp is a skeleton program that (partially) encodes an

algorithm to solve the problem. This lab's exercise will involve completing this program.

Design

Up until now, our programs have been able to fully process their input as soon as it was read

in. This is actually quite rare. Often, as in this lab's problem, we need to keep our information

around for a long time.

Let's start at the end product: to assign a letter grade, we need to know the student's score. That's

fine: read in the score, and print the corresponding letter grade. However, how can we assign

the letter grade? We first need to know the average and standard deviation of all of the scores;

the only way to know this is to sum all of the scores, and then we can compute the average and

standard deviation.

Consequently, the scores have to be processed twice: once to figure out the average and standard

deviation; a second time to assign letter grades based on the average and standard deviation.

We could use a file to store the sequence, and then reread the file each time we need to process

the values. The problem with this approach is that reading from a file is very, very, very slow

compared to reading from main memory---a thousand times as slow!

A much better solution is to use an internal container, in this case, a vector. In addition to

being much faster than input from a file, a vector gives us immediate access to any element

stored in the vector.

Behavior

Our program should display a greeting, and then prompt for and read the name of an input file.

It should then read a sequence of names and a sequence of scores from the input file. It should

then compute the average and standard deviation of the sequence of scores, and display these

values. Using the average and standard deviation, it should compute the sequence of letter

grades that correspond to the sequence of scores. It should then display each student's name,

score and letter grade.

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab10/DoubleVectorOps.h
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab10/DoubleVectorOps.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab10/DoubleVectorOps.doc
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab10/grades.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab10/scores1.data
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab10/scores2.data
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab10/scores3.data
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab10/Makefile

Objects

When we examine our behavioral description for objects, we find these objects:

Description Type Kind Name

a greeting string literal --

The name of the input file string varying inFileName

a sequence of names vector<string> varying nameVec

a sequence of scores vector<double> varying scoreVec

the average score double varying average

the standard deviation of the scores double varying stdDeviation

a sequence of letter grades vector<char> varying gradeVec

We can thus specify the behavior of our program this way:

Specification:

input (keyboard): the name of an input file.

input (input file): a sequence of names and scores.

output (screen): the average and standard deviation of the scores, plus the sequences of

names and scores, and the sequence of corresponding letter grades.

Operations

From our behavioral description, we have these operations:

Description Predefined? Name Library

Display a string yes << iostream

Read a string yes >> iostream

Read a sequence of names and scores from a file no -- --

Compute the average of a sequence scores no -- --

Compute the standard deviation of a sequence scores no -- --

Compute the sequence of letter grades corresponding to a

sequence scores
no -- --

Display sequences of names, scores and letter grades no -- --

There are several undefined operations, so it appears we'll be writing quite a few functions for

this lab.

Algorithm

We can organize the preceding objects and operations into the following algorithm:

1. Display a greeting.

2. Prompt for and read the name of the input file.

3. Fill nameVec and scoreVec with values from the input file.

4. Output the mean and standard deviation of the values in scoreVec.

5. Compute gradeVec, a vector of the letter grades corresponding to the scores

in scoreVec.

6. Display the elements in nameVec, scoreVec and gradeVec.

We will thus use three

different vector objects: nameVec storing string values, scoreVec storing double v

alues, and gradeVec storing char values.

Defining vector Objects

Vectors are declared like so in C++:

vector<Type> vecObj;

This declaration defines vecObj as a vector containing values of type Type.

A programmer using a vector must specify the type of value they want to store in a

given vector. While a vector is generally useful for storing any type of data, we always

know exactly what type of data we want to put in given a particular problem. While we could

try to keep track of the particular type ourselves, it's much, much better to let the compiler worry

about it.

The vector class is known as a template class; that is, it's be templated to allow us to specify

the Type of data that is stored in each vector.. A complete discussion of templates and

template classes is beyond us at this point, but for now it suffices to know why and how to use

them.

With the vector class template, the compiler will check everything done with vecObj.

Only Type objects can be put into vecObj; only Type objects will come out. No one (neither

the programmer nor the compiler) is ever surprised by the contents of a vector.

In grade.cpp, use this information to define the three vectors needed in the main

program: nameVec, scoreVec, and gradeVec. The first two vectors are declared early in

the function; gradeVec is declared later. (The comments tell you where.) Each of these

vectors stores a different type of data so write the declarations with this in mind. Also make

sure you include the vector library.

Filling vector Objects from a File

Now let's start tackling the undefined operations in our main algorithm. The first undefined

operation is to read in names and scores from a file. The name of the file is in inFileName;

the names and scores should be placed into the vectors that you just declared in the main

program.

We'll call this function fillVectors().

Design

Behavior

We can describe how this function should behave as follows:

Our function should receive the name of an input file, an empty vector of strings and an

empty vector of doubles from its caller. The function should open an ifstream to the input

file. It should then read each name and score from the ifstream, appending them to

the vector of strings and the vector of doubles, respectively. When no values remain to be

read, our function should close the ifstream, and pass back the filled vector objects.

Behavior

Using the behavioral description, our function needs the following objects:

Description Type Kind Movement Name

The name of the input file const string & constant in inFileName

An empty vector of strings vector<string> & varying in & out nameVec

An empty vector of doubles vector<double> & varying in & out scoreVec

a stream to inFileName ifstream varying local inStream

a student's name string varying local name

a student's score double varying local score

Given these objects, we can specify the behavior of our function as follows:

Specification:

receive: inFileName, a string; nameVec, a vector<string>; and scoreVec,

a vector<double>.

passback: nameVec and scoreVec, filled with the values from inFileName.

Since this function seems unlikely to be generally reuseable, we will define it within the same

file as our main function. Using the above information, place a prototype

for fillVectors() before the main function, and a function stub after the main function.

Since inFileName is a class object that is received but not passed back, it should be defined

as a constant reference parameter, not as a value parameter. In

contrast, nameVec and scoreVec are passed back, and so should be defined as reference

parameters.

Operations

In our behavioral description, we have the following operations:

Description
Predefined

?
Name Library

Receive inFileName, nameVec and scor

eVec
yes

function call

mechanism
built-in

Open an ifstream to inFileName yes
ifstream declarati

on

fstrea

m

Read a string from an ifstream yes >>
fstrea

m

Read a double from an ifstream yes >>
fstrea

m

Append a string to a vector<string> yes push_back() vector

Append a double to a vector<double> yes push_back() vector

Repeat reading and appending for whole file yes
eof-controlled input

loop
built-in

Close an ifstream yes close()
fstrea

m

Pass back vector objects yes reference parameter built-in

Algorithm

We can organize these objects and operations into the following algorithm:

1. Receive inFileName, nameVec and scoreVec.

2. Open inStream, a stream to inFileName, and check that it opened successfully.

3. Loop

a. Read name and score from inStream.

b. If end-of-file was reached, terminate repetition.

c. Append name to nameVec.

d. Append score to scoreVec.

End loop.

4. Close inStream.

Coding

To append values to a vector, use the vector method named push_back():

vectorObject.push_back(newValue);

Such a statement "pushes" newValue onto the back of

the vector named vectorObject.

Using this information, complete the stub of fillVectors(). Then compile what you have

written and make sure that it is free of syntax errors before proceeding.

Average

The next undefined operation should average the scores. An important observation here is that it

doesn't matter that the values are scores. They could be temperatures, heights, weights, times,

or any double values. So the average() function that we'll write computes the average of

some generic double values, regardless of what they actually mean.

It's important to note this now because it will have an effect on the way we name our variables.

Yes, we'll continue to think of the scores as scores in the main program (and other functions),

but in average() we'll think of them as just a sequence of real numbers.

Design

Behavior

We can describe how this function should behave as follows:

Our function should receive a vector of double values. It should add up the values in

the vector, and if there is at least one value in the vector, our function should return the

average of the values (i.e., the sum divided by the number of values). Otherwise, our function

should display an error message and return a default value (e.g., 0.0).

Objects

Using the behavioral description, our function needs the following objects:

Description Type Kind Movement Name

A vector of doubles
const

vector<double> &
varying in numVec

the sum of the values in

the vector
double varying local sum

the number of values in

the vector
int varying local numValues

an error message string literal local --

a default return value double literal local 0.0

Given these objects, we can specify the behavior of our function as follows:

Specification:

receive: numVec, a vector<double>.

precondition: numVec is not empty.

return: the average of the values in numVec.

Since we've designed this function to be generally reusable, we will define it within a library

named DoubleVectorOps.

Place a prototype

for average() in DoubleVectorOps.h and DoubleVectorOps.doc, and a

function stub in DoubleVectorOps.cpp.

Since numVec is a class object that is received but not passed back, it should be defined as a

constant reference parameter.

Operations

In our behavioral description, we have the following operations:

Description Predefined? Name Library

Receive numVec yes
function call

mechanism
built-in

Sum the values in a vector<double> yes accumulate() numeric

Determine the number of values in

a vector<double>
yes size() vector

Divide two double values yes / built-in

Return a double value yes return built-in

Display an error message yes << iostream

Select between normal case and error case yes if statement built-in

Algorithm

We can organize these objects and operations into the following algorithm:

1. Receive numVec.

2. Compute sum, the sum of the values in numVec.

3. Compute numValues, the number of values in numVec.

4. If numValues > 0:

 Return sum / numValues.

Otherwise

a. Display an error message via cerr.

b. Return 0.0 as a default value.

End if.

Coding

As noted above, the STL contains not only containers (like vector), but it also contains

algorithms. The function accumulate() is one such algorithm, and it comes from the library

named numeric. This function adds up the values in a vector:

accumulate(vectorObject.begin(), vectorObject.end(), 0.0)

This expression returns the sum of the values in vectorObject. To use accumulate(),

you must include the numeric library in your program.

Another operation we need is to determine the number of values in a vector. This is

considerably easier:

vectorObject.size()

This expression evaluates to the number of values in vectorObject. The size method is

part of the vector class, and so you must include the vector library (which must be done

anyone so that you can declare vectorObject in the first place).

Using this information, complete the stub for average(). Then uncomment the call

to average() in the main function, translate and test your program. Don't forget to include

the numeric library! Verify that your program is correctly computing the average of the

values in the input file before you proceed.

vector and the Standard Template Library

In writing the average() function, we used of one of the vector methods, size(); and

we used one of the C++ standard library algorithms, accumulate(). Being knowledgeable

about what methods and algorithms can be applied to an object is important because it allows

you to avoid reinventing the wheel. We could have written our own functions to find the

number of values in a vector, or add up the values in a vector, but why go to all that extra

effort when we can use the provided one? Learning about the functions and algorithms that can

be applied to an object takes time, but it is time well-spent, since it provides ready-made

solutions for many of the problems you will encounter.

As mentioned earlier, vector is our first look at a template class. The vector template is

just one of many different kinds of containers provided by the C++ Standard Template Library.

Other containers include the list, the set, the map, the stack, the queue and a variety of

others. Each of these containers has its own unique properties that distinquish it from the others.

These containers are typically the subject of later computer science courses, and so we will not

discuss them further here.

Some of the vector methods and each of the STL algorithms make use of a new kind of object

called an iterator. An iterator is an object that can move through a sequence of values and

access each of the values in turn. Each of the containers in STL provide iterators for processing

their elements, and each of the STL algorithms take a container's iterators as arguments, which

they use to access the elements in that container.

It is through iterators that the STL algorithms can be written easily to handle any of the STL

containers. Otherwise, the authors of the STL would have to write

an accumulate() function for every container implemented in the STL. In fact, we could

write our own, brand-new container (perhaps never seen before in the history of computing);

as long as we wrote iterators for our new container, we could use all of the STL algorithms

without having to change the code for those algorithms.

A complete discussion of iterators is beyond us at this point; however, it is useful to understand

that each of the containers (including vector) contains a method begin() that returns an

iterator to its first element, plus a method end() that returns an iterator pointing beyond its

final element.

These two iterators thus mark the beginning and end of a container. An STL algorithm

(like accumulate()) can then use these two end points of the container to iterate through

the whole container and do its work (e.g., add the elements together).

Standard Deviation

Returning to our problem at hand, we next need to write function to compute the standard

deviation of our scores. standardDev() will be given a vector of double values, and it

will return the standard deviation of those values.

Since a proper discussion of standard deviation would take us into statistics, we'll black box the

computation. That is, the specification and algorithm are given below without the rest of the

OCD design. Generally you do want a good understanding of the problem you're working on

and of the solution you come up with for the problem. But in some cases, one person may design

a solution, and some one else may be asked to implement it.

Design

The specification for this function is as follows:

Specification:

receive: numVec, a vector<double>.

precondition: numVec is not empty.

return: The standard deviation of the values in numVec.

Since this function is generally reusable (just like average()), it should also be defined in

our DoubleVectorOps library. Using this specification, place a prototype

for standardDev() in DoubleVectorOps.h and DoubleVectorOps.doc, and a

function stub in DoubleVectorOps.cpp.

As before, numVec should be defined as a constant reference parameter.

An algorithm to compute the standard deviation is as follows:

1. Receive numVec.

2. Compute numValues, the number of values in numVec.

3. If numValues > 0:

a. Define avg, a double initialized to the average of the values in numVec.

b. Define sumSqrTerms, a double initialized to zero.

c. For each index i of numVec:

i. Define term, a double initialized to numVeci - avg.

ii. Add term2 to sumSqrTerms.

End loop.

d. Return sqrt(sumSqrTerms / numValues).

Otherwise

e. Display an error message via cerr.

f. Return 0.0 as a default value.

End if.

We use the notation numVeci to refer to the value in numVec whose index is i.

Coding

Vector size. To determine the number of values in a vector, we can use

the size() method, as before.

Average. To compute the average of the values in a vector, we can use

the average() function that we just defined.

The loop. The loop can be implemented as a counting for loop that counts from 0

to numValues minus one:

for (int i = 0; i < numValues; i++)

 ...

This is perhaps one of the most common ways to process a vector. Become very familiar

with this loop since you will see it in any program that uses a vector. It's a little different

from the counting loops we've used in the past; the primary reason for this is

because vector indices start at index 0.

Element access. To access a value from a vector, the subscript operation can be applied to

the vector, in the same manner as a string. The pattern is:

vectorObject [index]

This expression evaluates to the value that is stored within vectorObject at index index.

Do it. Using this information, complete the stub for standardDev(). Then uncomment the

call to standardDev() in the main function, and translate and test what you have written.

You should get the following standard deviations (approximately):

File Standard Deviation

scores1.data 11.1803

scores2.data 2.69186

scores3.data 0.927025

Make sure that your program is correctly computing the standard deviation of the values in the

input file before you proceed.

Computing Letter Grades

Print a hard copy of each of the three scores files. Take a moment and and look over the

distribution of scores in each file.

Question #10.1: If you were assigning grades, what letter grades would you assign for the

scores in scores1.data, scores2.data and scores3.data? Assume the scores

are out of a possible 100 points. Write your letter grades on the printouts.

Our current task is to write a function that computes the appropriate letter grades for the input

scores, curving the grades as appropriate. This function needs a sequence of scores to process,

and it must return a corresponding sequence of letter grades; we can specify what the function

must do as follows:

Specification:

receive: scoreVec, a vector of double values.

return: gradeVec, a vector of char values.

Since this function seems pretty tightly tied to this particular grading problem, we will define

it locally, within grades.cpp.

Using this information, prototype computeLetterGrades() before the main function and

define a stub following the main function. Since scoreVec is a class object that is received

but not passed back, define it as a constant reference parameter.

There are various ways to curve the grades based on a collection of scores. We'll base it on the

average and standard deviation of the scores:

• Scores more than 1.5 standard deviations (s-ds) below the mean receive the 'F' (failing)

grade.

• Scores that are between 0.5 and 1.5 s-ds below the mean receive the 'D' grade.

• Scores that are between 0.5 below and 0.5 s-ds above the mean receive the 'C' grade.

• Scores that are between 0.5 and 1.5 s-ds above the mean receive the 'B' grade.

• Scores that are more than 1.5 s-ds above the mean receive the 'A' grade.

Here is the algorithm:

1. Receive scoreVec, a vector of scores.

2. Define numValues, the number of values in the vector.

3. Define gradeVec, a vector of characters the same length as scoreVec.

4. If numValues > 0:

a. Define avg, the average of the values.

b. Define standardDev, the standard deviation of the values.

c. Define F_CUT_OFF as avg - 1.5 * standardDev.

d. Define D_CUT_OFF as avg - 0.5 * standardDev.

e. Define C_CUT_OFF as avg + 0.5 * standardDev.

f. Define B_CUT_OFF as avg + 1.5 * standardDev.

g. For each index i of scoreVec:

i. If scoreVeci < F_CUT_OFF:

 Set gradeVeci to 'F'.

Else if scoreVeci < D_CUT_OFF:

 Set gradeVeci to 'D'.

Else if scoreVeci < C_CUT_OFF:

 Set gradeVeci to 'C'.

Else if scoreVeci < B_CUT_OFF:

 Set gradeVeci to 'B'.

Else

 Set gradeVeci to 'A'.

End if.

End loop.

5. End if.

6. Return gradeVec.

Using the information above, complete the definition of computeLetterGrades(). Then

compile what you have written to check for syntax errors.

Display the Names, Scores and Grades

The final operation is to display the information we have computed.

Design and write a function that, given an ostream, a vector of names, a vector of

scores, and a vector of letter grades, displays these three vector objects in tabular form.

For example, the output produced when scores1.data is processed should appear

something like the following:

Enter the name of the scores file: scores1.data

Mean score: 75

Std. Dev: 11.1803

joan 55 F

joe 60 D

jane 60 D

jim 65 D

janet 70 C

john 70 C

johanna 75 C

jack 75 C

joeline 75 C

jacques 75 C

josh 80 C

janna 80 C

jason 85 B

jadzia 90 B

jon 90 B

jackie 95 A

If you find that you have logic errors in what you have written, use the debugger to find them.

Question #10.2: When scores2.data or scores3.data are processed using our

curve, how do the curved grades compare with the grades you assigned?

Question #10.3: What have you learned about grading on the curve?

Submit

Turn in your answers to the questions in this exercise, a copy of your code, and a sample run of

the program on at least the three provided data files.

Terminology

element, iterator, sequence (of values), Standard Template Library, STL, subscript, template

class, vector

3. Project 10

Your instructor will assign you one of the problems below. To solve your problem, write a

program that reads the necessary information to compute and output the indicated values, as

efficiently as possible. Following the pattern in the lab exercise, first, design using OCD;

then code your design in C++ using stepwise translation; finally, test your program thoroughly.

Project #10.1: The median value of a sequence of numbers is a value v such that one half of

the numbers are greater than v, and one half of the numbers are less than v. A simple algorithm

to compute the median of a sequence is

1. Let seq be the sequence.

2. Let n be the number of values in the sequence.

3. Sort seq.

4. If n is an odd number:

 Return the middle value of the sorted sequence.

Otherwise (n is even):

 Return the average of the two middle values in the sorted sequence.

Write a function that, given a vector of numbers, computes the median value of those numbers.

Your function should use the STL sort() algorithm for the third step. Write a program that,

given the name of a file containing an arbitrary sequence of numbers, computes and displays

the median value of that sequence.

Project #10.2: A certain on-line testing program records student exam results in a text file, each

line of which has the form:
name examScore

Write a program that analyzes student performance on an exam using the information from such

a file (although you should store the data in vectors). The program should input the name of

the text file, and then display the worst score, the best score, the average score, the standard

deviation, and a histogram---a bar graph indicating the frequency with which a given score

occurred. For example, if three people scored 74, five people scored 75, six people scored 76,

no one scored 77 and two people scored 78, then that portion of the histogram should appear

as:
74: ***

75: *****

76: ******

77:

78: **

Entries below the worst or above the best should not be displayed.

Project #10.3: Each year, the well-known meteorologist Dr. H. Tu Oh creates a file containing

the year's 12 monthly precipitation totals. Write a program that, given the names of two of these

files, will create a file containing an easy-to-read analysis comparing the two sets of readings,

including which of the two years was the wettest (and by how much), the average monthly

precipitation for each year, and the wettest and driest months in each year.

Project #10.4: Write a program that, given the name of a text file, reads that file and counts the

number of occurrences of each alphabetic letter in the file. Your program should use

a vector of length 26 to count the occurrences of the 26 alphabetic letters, and treat upper

and lower-case instances of a letter as the same letter. (Hint #1: look up tolower()---testing

the case isn't necessary. Hint #2: if ch is a char, then ch-'a' is a valid C++ expression and

will evaluate to 0 when ch is equal to 'a'---try 'b', 'c', and 'd'!)

Run your program on several large text files.

Study the results looking for patterns; then write a paragraph addressing these two questions:

1. How would these numbers be useful to someone decoding a message encoded using the

Caesar cipher?

2. How would these numbers be useful to someone competing on the Wheel of Fortune game

show?

Submit this paragraph as part of your documentation.

Turn In

Turn the following things:

1. Your OCD.

2. Your source program.

3. The output from an execution of your program.

Experiment 11: Building Classes

1. Objective of the Experiment

➢ To learn how to write classes.

➢ To learn about instance variables and methods.

➢ To learn how to overload C++ operators.

➢ To learn about inline functions.

2. Theoretical Background

Introduction

Most of the problems we have examined have had relatively simple solutions, because the data

objects in the problem could be represented using the predefined C++ types. We can represent

a menu with a string, a choice from that menu with a char, the radius of a circle with

a double, and so on.

The problem is that real-world problems often involve data objects that cannot be directly

represented using just a single, predefined C++ type.

Let's consider two different problems.

Problem #1: Cartesian points. In the algebra courses you've taken, you have probably graphed

some functions on a two-dimensional graph. These graphs typically use a Cartesian coordinate

system, with x- and y-coordinates, to plot the points.

This graph plots the point (7,3), which is 7 units to the right along the x-axis and 3 units up

along the y-axis. In this lab, we'll only worry about representing a single point. This work,

though, could easily be used in a program to generate some actual graphs in a Cartesian

coordinate system.

Problem #2: Fractions. The other problem is doing fractional arithmetic. Suppose that we

know a certain gourmet chef named Pièrre whose recipes are written to make 12 servings. There

a few difficulties:

1. Pièrre frequently must prepare a dish for more or fewer than 12 customers, requiring the

scaling of his recipes (e.g., 1 customer results in 1/12 of a recipe, 2 customers results in 1/6

of a recipe, 15 customers results in 15/12 = 5/4 of a recipe, etc.).

2. Pièrre's recipes are written using fractions (e.g., 1/2 tsp., 3/4 cup, etc.) so that he must

multiply fractions when scaling a recipe.

3. Pièrre is so poor at multiplying fractions, that he has hired us to write a program that will

enable him to conveniently multiply two fractions.

We will work through two programs to manipulate fractions.

Coding. Keep in mind that you will write the code for the Fraction class.

The Coordinate class is presented here as an example to help you write code for

the Fraction class.

Files

Directory: lab11

• Fraction.h, Fraction.cpp, and Fraction.doc implement

the Fraction class.

• gcd.h and gcd.cpp implement Euclid's greatest-common-divisor algorithm (used by

the Fraction class).

• pierre1.cpp and pierre2.cpp are drivers for the Fraction class.

• Makefile is a makefile.

Create the specified directory, and copy the files above into the new directory. Only gcc users

need a makefile; all others should create a project and add all of the .cpp files to it.

Add your name, date, and purpose to the opening documentation of the code and documentation

files; if you're modifying and adding to the code written by someone else, add your data as part

of the file's modification history.

Looking at the Code

Take a moment to compare the programs in pierre1.cpp and pierre2.cpp. Both

programs implement the same basic algorithm:

1. Get oldMeasure, the fractional measure to be converted.

2. Get scaleFactor, the fractional conversion factor.

3. Compute newMeasure = oldMeasure * scaleFactor.

4. Output newMeasure.

A solution to Pièrre's problem is quite simple, if we have the ability to define, input, multiply

and output fraction objects. That's the work we'll be doing in this lab.

The two programs differ only in how they read and write fraction objects. The second version

has a more familiar look to it, but will require more work from us. So the first version will be

useful for getting something workable, but it's missing some input and output features.

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab11/Fraction.h
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab11/Fraction.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab11/Fraction.doc
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab11/gcd.h
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab11/gcd.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab11/pierre1.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab11/pierre2.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab11/Makefile

Creating Classes

The difficulty is that there is no predefined C++ type Fraction. In such very common

situations, C++ provides a mechanism by which a programmer can create a new type and its

operations. This mechanism is called a class.

In C++, a new type can be created by

1. Defining the data objects, known as instance variables, that make up the attributes of an

object of the new type.

2. Surrounding those definitions with a class structure.

The class structure mentioned in this second step looks like this:

class TypeName

{

 public:

 private:

};

where TypeName is a name describing the new type. A class is (almost) always defined in a

header file.

A class has two sections, a public section and a private section. The public section is where

class operations are declared, and the private section is where class attributes are declared.

Let's first consider a point in Cartesian coordinates. A point consists of an x-coordinate and a

y-coordinate. We can easily write two variables to hold these two values:

double myX, myY;

Of course, the context for this declaration is all important. We declare these variables in an

appropriately-named class structure, making them instance variables:

class Coordinate

{

 public:

 private:

 double myX, myY;

};

We use the prefix "my" at the beginning of a name for an instance variable name to encourage

an internal perspective. We imagine ourselves as the object we're trying to describe. For

example, when figuring out these instance variables, I could say, "I am a Cartesian coordinate,

and I have an x-coordinate and a y-coordinate." Since they are my attributes, I label them as

such. This way I shouldn't get them confused with other objects that I work with.

The result is a new type, named Coordinate, which can be used as a type for new objects:

Coordinate point1, point2, point3, point4;

Each pointI has two double components, one named myX and the other named myY. This

is why myX and myY are known as instance variables: every instance of

a Coordinate has its own copies of these variables. The neat thing is that we only had to

declare myX and myY once in the class definition.

We can now expand our general pattern for a class definition:

class TypeName

{

 public:

 private:

 Type1 InstVarList1;

 Type2 InstVarList2;

 ...

 TypeN InstVarListN;

};

where each TypeI is any defined type and each InstVarListI is a list of instance variables

of type TypeI.

Now let's apply this same thinking to the fraction problem. We first need to identify the

attributes of a Fraction object. Here are a few fractions:

1/2

4/3

4/16

16/4

Each fraction has the form:
number1/number2

where number1 is called the numerator and number2 is called the denominator. A fraction

needs both a numerator and a denominator. However, the / symbol is common to all fractions,

and so it is not recorded as an attribute of a fraction. Consequently, a fraction has just two

attributes, a numerator and a denominator, both of which are integers.

Edit the file Fraction.h:

• Write a class definitions for a class named Fraction.

• In the appropriate place, define two integer instance variables

named myNumerator and myDenominator.

Look at the patterns and example above for help with these two steps.

Given this declaration of Fraction, we can make the following declarations:

Fraction oldMeasure;

...

Fraction scaleFactor;

These declarations define two objects with the following forms:

Again, note that each instance of type Fraction has its own copy of each of the attributes we

defined; that's why they're called instance variables. It's also why we prefix the variable name

with "my", to encourage an internal perspective.

In the source program pierre1.cpp, uncomment the definition of oldMeasure. (Do not

uncomment anything else, yet.) Compile your source program to test the syntax of what you

have written. When it is correct, continue to the next part of the exercise.

Methods

Besides having instance variables, a class can also have methods. A method is a function

declared inside a class to provide an operation for objects of the class.

We've used several methods already. A vector has a size() method. A string has

a substr() method. But until now we've only used methods. Now we get to define our own

methods in our own classes.

Methods are prototyped within the class structure itself (in the header file), and they are

normally defined in the class implementation file. However, very simple methods (i.e., ones

that fit on a single line) are defined "inline": in the header file, following the class declaration,

prefixed by the keyword inline. The reasons for this are a bit technical and beyond the scope

of what we're really trying to do. Just remember to define simple methods in the header file

with an inline in front of them.

Class Structure and Information Hiding

One of the characteristics of a class is that its instance variables are kept private, meaning that

a program using the class is not permitted to directly access them. Mostly this is an issue of

trust. In the case of a Coordinate object, it probably wouldn't be too bad if other

programmers had direct access to the myX and myY instance variables. However, in

the Fraction class, we must make sure that myDenominator does not become zero since

division by 0 is undefined. If we hide away myDenominator from the casual programmer,

we can write the methods of the Fraction class so that myDenominator never becomes

0.

In practice, it is not worth the time and effort to try to figure out which instance variables are

safe to let everyone access directly. Common practice is to make all instance variables private.

On the other hand, we do want users of the class to be able to access the operations of a class.

As a result, the operations should be declared in the public section of the class. Anything

defined in the public section can be accessed through an instance of the class from any part of

the program. So, wherever we have a Fraction object, we will be able to access its public

operations.

By convention, the public section of a class comes first, so that a user of the class can quickly

see what operations it provides. It is good style to have one public section and one private

section in a class; however, C++ allows the keywords public: and private: to appear an

arbitrary number of times in a class declaration.

Methods As Messages

We have seen that methods are called differently from normal functions: if

two string objects named greeting and closing are defined as follows:

string greeting = "hello",

 closing = "goodbye";

then the expression
cout << greeting.size() << ' ' << closing.size() << endl;

prints 5 7, the sizes of the two strings.

Object-oriented programmers like to think of a call to a method as a message to which the

object responds. When we send the size() message to greeting, greeting responds

with the number of characters it contains; and if we send the same size() message

to closing, closing responds with the number of characters it contains. This is part of the

internal perspective for designing and writing a class. When we use the string class, we're

not responsible for its operations. We just simple ask the string objects to carry out various

actions.

As you might expect, defining a method is also a bit different from defining a normal function.

a) Part I: pierre1.cpp

In this first part of this exercise, we will focus on adding the methods to

class Fraction needed to get pierre1.cpp operational.

An Output Method

To facilitate debugging a class, it is often a good idea to begin with a method that can be used

to display class objects---an output method.

From the perspective of our Coordinate class, we can specify the task of such a method,

which we'll call print(), as follows:

Specification:

receive: out, an ostream to which I write my values.

output: myX and myY, as an ordered pair.

passback: out, containing the output values.

Note the use of internal perspective (e.g., "...I write my value.").

Also note that this method receives and passes back an ostream. The rule is very simple:

Rule: All streams are passed by reference---received and passed back.

The reasons for this are fairly technical and are beyond what we really need to know right now,

but this is hard-and-fast rule.

Methods must be prototyped within the class declaration, so we would write:

class Coordinate

{

 public:

 void print(ostream & out) const;

 private:

 double myX, myY;

};

Whoa! Where did that const come from? Internal perspective is an easy perspective for

explaining this: "I am a Coordinate object, and when I am printed using print(), I should

not change." It's the const that adds the "I should not change". Think about it:

a Coordinate object that changes every time we print it would be quite useless. We can get

the compiler to enforce this observation by adding const after the parameter list for the

method; now, the compiler will not let us change myX or myY in the method definition.

Also, we've put print() in the public section of the class. This is quite typical. It's very

common for programmers to print out coordinates in their programs, so it's an operation that

we want to make available to everyone. Hence, it goes in the public section.

Whenever you declare a method, take a bit of time to think if the method should change the

instance variables of the class. If you even suspect they shouldn't change, add the const. You

can always take it away later if you discover you do need to change the contents of an instance

variable. (We'll see a method that does very soon.)

This is a fairly simple method, so we would define it within the header file Coordinate.h,

following the declaration of class Coordinate. As an inline method, we would precede its

definition with the keyword inline.

To define print(), we must inform the compiler that this is a method of a class. This is done

by preceding the name of the method with the name of the class of which the method is a

member and the scope operator (::). That is, we would define print() as a method of

our Coordinate class as follows:

inline void Coordinate::print(ostream & out) const

{

 out << '(' << myX << ',' << myY << ')';

}

• inline indicates that this is a simple method that should be inlined.

• void tells the compiler that this method returns nothing.

• Coordinate:: tells the compiler that this method is a member of class Coordinate.

• print is the name of the method.

• (ostream & out) is the parameter list of the method.

• const tells the compiler that this method should not modify any of the instance variables

of class Coordinate.

Note that const must be present in both the prototype and the definition of a method that does

not modify its instance variables. In contrast, inline is used only with the definition, not the

prototype.

Let's consider what happens when this method is invoked. As with anything class related, this

makes the most sense in an internal perspective: "I am a Coordinate object, and when

someone sends me a message telling me to print myself out, I send a left parenthesis, my x-

coordinate, a comma, my y-coordinate, and a right parenthesis to the provided ostream."

Note how the "my" prefix makes the code similar to this statement; also note the message

metaphor.

Let's see if you have the hang of this:

Question #11.1: If point is a Coordinate object whose x-coordinate is 3 and whose y-

coordinate is 4, then what does the statement point.print(cout); display?

Question #11.2: If origin is a Coordinate object whose x-coordinate is 0 and whose

y-coordinate is 0, then what does the statement origin.print(cerr); display?

As seen in the method definition above, a method can directly access the private instance

variables of the object. Otherwise, the private instance variables would remain hidden to all

code everywhere, making them quite useless. Someone should be able to access them, and why

not myself? If I'm a Coordinate object and someone asks me to print myself, I should be

allowed to access my private instance variables.

Using all of this, prototype and define a similar print() method for your Fraction class.

Write the method so that when oldMeasure is a Fraction whose numerator is 3 and

whose denominator is 4, then a message:

oldMeasure.print(cout);

will display

3/4

Prototype this method in the public section of class Fraction, and define it as

an inline method following the declaration of class Fraction in Fraction.h. Check

the syntax of your method, and continue when it is correct.

Constructors

An output operation for a class is of little use unless we are able to define and initialize objects

of that class. The action of defining and initializing an object is called constructing that object.

To allow the designer of a class to control the construction of class objects, C++ allows us to

define a special function of a class called a constructor. A constructor specifies what actions

are to be taken when a class object is constructed. When an instance is declared, the compiler

calls this constructor function to initialize the object's instance variables.

For example, what should happen when we declare a new Coordinate object like so:

Coordinate point;

Presently, there would be junk in this object's instance variables. It seems reasonable, though,

to initialize the x- and y-coordinates to 0.

We might specify this as a postcondition (as part of a specification):

Specification:

postcondition: myX == 0.0 and myY == 0.0.

A constructor does not return anything to its caller; it initializes the instance variables of an

object when that object is defined. We specify this behavior as a boolean expression which is

true when the constructor terminates. Such an expression is called a postcondition, since it is a

condition that holds true after (i.e., "post") the constructor finishes.

A postcondition is not code you should write. It's a test that should be true if you tested it at the

end of the constructor. You can test a postcondition if you want (using an assert()), and

this may be a good idea (especially if there's a lot of code and there's a bug you can't find). But

it's not necessary. Instead, a postcondition indicates what other code you should write. In this

case, what code can I execute so that myX is 0.0? The answer is below.

In order for a constructor to be a member of a class, its prototype must appear within the class.

Unlike other functions, C++ determines the name of this function:

Rule: The name of a constructor is always the name of the class.

So we prototype this constructor in the public section of class Coordinate, as follows:

class Coordinate

{

 public:

 Coordinate();

 void print(ostream & out) const;

 private:

 double myX, myY;

};

Unlike our print() method, a constructor initializes (i.e., modifies) the instance variables of

a class. As a result, it should not (and cannot) be prototyped or defined as const. So the

"missing" const is understandable.

However, where's the return type?!! Every function has had a return type. C++ insists on it.

Well, in fact, C++ will equally insist that a constructor does not have a return type. As observed

above, a constructor never returns anything to its caller; it initializes its instance variables. The

object itself has already been created, so that doesn't have to be returned. It just needs to be

initialized. So constructors do not need a return type.

As with the print() method, we want everyone to be able to

construct Coordinate objects, so the prototype should be placed in the public section of the

class.

Also, as before, simple definitions should be placed in the class header file, designated as inline

functions. To define an inline Coordinate constructor, we thus write this funny-looking

definition in the header file:

inline Coordinate::Coordinate()

{

 myX = 0.0;

 myY = 0.0;

}

The first Coordinate is the name of the class, telling the compiler that this is some member

of class Coordinate. The second Coordinate is the name of the constructor.

Given this definition, when a Coordinate object is defined, the compiler will call this

constructor to initialize the new object, setting the object's myX and myY instance variables to

zero.

The pattern for a constructor is thus:

ClassName::ClassName(ParameterList)

{

 StatementList

}

where the first ClassName refers to the name of the class, the second ClassName names the

constructor, and StatementList is a sequence of statements that initialize the instance

variables of the class.

Constructors can take parameters, which are defined as they would be for any other function,

and any valid C++ statement can appear in the body of such a constructor.

Using this information, prototype and define a constructor for your Fraction class, that

satisfies the following specification:

Specification:

postcondition: myNumerator == 0 and myDenominator == 1.

That is, the definition:
Fraction oldMeasure;

should initialize the instance variables of oldMeasure appropriately to represent the fraction

0/1. (Remember that division by 0 is a Bad Thing, so initializing it to 0/0 is not advisable.)

Store the prototype in the public section of class Fraction, and define it as inline,

following the declaration of class Fraction, in Fraction.h. Test the syntax of what you

have written, and continue when it is correct.

A Second Constructor

A class can have multiple constructors, so long as each definition is distinct in either the number

or the type of its parameters. Defining the same function multiple times is

called overloading the function. Overloading works for normal functions, methods, and

constructors.

Suppose that we would like to be able to explicitly initialize the x- and y-coordinates of

a Coordinate object to two values specified by the programmer creating the object. We can

specify this as follows:

Specification:

receive: x and y, two double values.

postcondition: myX == x and myY == y.

We can overload the Coordinate constructor with a second definition, one that takes

two double arguments and uses them to initialize our instance variables:

inline Coordinate::Coordinate(double x, double y)

{

 myX = x;

 myY = y;

}

Note the benefit of using the "my" prefix: we don't have to come up with silly or awkward

names for the parameters here. If we called the instance variables x and y, we'd have to come

up with different names for these parameters. This convention also clarifies the internal

perspective: myX is my x-coordinate while x is an x-coordinate that something else has handed

to me.

As usual for such a simple function, this constructor is defined inline in the header file, and like

all methods of a class, its prototype would be placed in the public section of

class Coordinate:

class Coordinate

{

 public:

 Coordinate();

 Coordinate(double x, double y);

 void print(ostream & out) const;

 private:

 double myX, myY;

};

We can declare Coordinate objects to invoke this constructor:
Coordinate point1,

 point2(1.2, 3.4);

Our first constructor initializes point1 since its declaration has no arguments and the first

constructor has no parameters. Our second constructor initializes point2 since its declaration

has two double arguments and the second constructor has two double parameters. After

these declarations, we have these objects:

Using this information, define and prototype a second Fraction constructor that satisfies this

specification:

Specification:

receive: numerator and denominator, two integers.

precondition: denominator is not 0.

postcondition: myNumerator == numerator and myDenominator == denominato

r.

Consequently, the definitions
Fraction oldMeasure;

...

Fraction scaleFactor(1, 6);

should initialize oldMeasure to 0/1, and initialize scaleFactor to 1/6.

Use a call to assert() to ensure the precondition.

Use the compiler to test the syntax of what you have written. When the syntax is correct,

use pierre1.cpp to test what you have done, by inserting calls to print() to display their

values:

...

oldMeasure.print(cout);

...

scaleFactor.print(cout);

Also try initializing scaleFactor with a zero denominator. Make sure that

the assert() is triggered.

When your constructors and methods are working correctly, remove this test code

from pierre1.cpp.

Accessor Methods

It might be useful to be able to extract the x- and y-coordinates of a Coordinate object. It is

common to need the values stored in an object, and the methods that return these values are

generally known as accessor methods.

As with most classes, the accessor methods for the Coordinate class have very simple

specifications:

Specification:

return: my x-coordinate.

and

Specification:

return: my y-coordinate.

Since these methods do not modify any of the instance variables, we can declare them

as const methods. Generally, accessor methods begin with the prefix "get" followed by the

name of the attribute (without "my"). So, two new prototypes are added:

class Coordinate

{

 public:

 Coordinate();

 Coordinate(double x, double y);

 double getX() const;

 double getY() const;

 void print(ostream & out) const;

 private:

 double myX, myY;

};

We would then define these simple methods in the header file as follows:

inline double Coordinate::getX() const

{

 return myX;

}

inline double Coordinate::getY() const

{

 return myY;

}

Suppose we declare two Coordinate objects point1 and point2:

Question #11.3: What do these expression evaluate

to: point1.getX() and point2.getY()?

This is another reason for the "my" prefix. We can use the my-free names as the name of a

method that accesses the value of that instance variable.

Using this information, add to class Fraction an accessor method getNumerator() that

satisfies this specification:

Specification:

return: myNumerator.

Also write an accessor method getDenominator() that satisfies this specification:

Specification:

return: myDenominator.

Since these are simple methods, define them inline following the class declaration in the

header file. Test their syntax by compiling the code and continue when they are correct.

Input

Once we are able to define Fraction objects, it is useful to be able to input

a Fraction value. To illustrate, suppose that we wanted to input a Coordinate value that

looked like this:

(3,4)

A user would type this in, or perhaps a program would read this in from a file.

We can specify the problem as follows:

Specification:

receive: in, an istream.

precondition: in contains a Coordinate of the form (x,y).

input: (x,y), from in.

passback: in, with the input values extracted from it.

postcondition: myX == x && myY == y.

We prototype this method in the class (as with all methods), although this one

is not const because it modifies the instance variables:

class Coordinate

{

 public:

 Coordinate();

 Coordinate(double x, double y);

 double getX() const;

 double getY() const;

 void read(istream & in);

 void print(ostream & out) const;

 private:

 double myX, myY;

};

We can define read() as a method that satisfies the specification, as follows:

void Coordinate::read(istream & in)

{

 char ch; // for reading (, and)

 in >> ch // read '('

 >> myX // read x-coordinate

 >> ch // read ','

 >> myY // read y-coordinate

 >> ch; // read ')'

}

Testing pre- and postconditions for an input method is tricky at best, so don't worry that we

haven't tested them here. They're good to write down anyway so that we're clear on what we

expect.

The input specification indicates that a coordinate in the input will have punctuation around it:

parentheses and a comma. The ch variable is used to read in these characters and throw them

away. It's useful to have them in the input to make the input more readable, but they're frivolous

in a Coordinate object since every Coordinate object is written with this punctuation.

We only need it in the input and output.

Given the length of this method, it's pressing the boundaries of what some compilers define as

"simple"; some won't allow us to declare it inline. As a result, we define it in the implementation

file (without the keyword inline).

With this method, the statements

Coordinate point;

point.read(cin);

reads a Coordinate of the form (x,y) from cin.

Using this information, define and prototype an input method named read() for

class Fraction. Your method should satisfy this specification:

Specification:

receive: in, an istream.

precondition: in contains a Fraction value of the form n/d and d is not zero.

input: n/d, from in.

passback: in, with Fraction n/d extracted from it.

postcondition: myNumerator == n and myDenominator == d.

Some differences from the read() of Coordinate:

• You can (and should) test the second half of the precondition (i.e., d is not zero). Use a call

to assert().

• Watch the punctuation. A coordinate has three punctuation characters, but a fraction has

just one. Don't blindly copy the input statement. Change the comments so that it's clear

what's being read in by each input operator.

After you've written and successfully compiled this new method, you should be able to

uncomment the statements:

oldMeasure.read(cin);

...

scaleFactor.read(cin);

Test your input method by adding print() statements after the read() statements

in pierre1.cpp to test the input routines. Compile and run the program, and continue

when read() works correctly. Remove the test print() statements.

Fractional Multiplication

We have seen that methods like constructors can be overloaded. In addition, C++ allows us to

overload operators, such as the arithmetic operators (+, -, *, /, and %). However to do so, we

need to rethink the way expressions work.

Suppose that we want to permit two Coordinate objects to be added together. In C++'s

object-oriented world, an expression like

point1 + point2

is thought of as sending the + message to point1, with point2 as a message argument. We

can specify the problem from the perspective of the Coordinate receiving this message:

Specification:

receive: point2, a Coordinate.

return: result, a Coordinate.

postcondition: result.myX == myX + point2.myX and result.myY == myY + poin

t2.myY.

Again, the postcondition here suggests the code that we should write, and it doesn't particularly

warrant testing at the end of the method.

According to our specification, this operation does not modify the instance variables of

the Coordinate that receives it, and so we write the following prototype:

class Coordinate

{

 public:

 Coordinate();

 Coordinate(double x, double y);

 double getX() const;

 double getY() const;

 void read(istream & in);

 void print(ostream & out) const;

 Coordinate operator+(const Coordinate & point2) const;

 private:

 double myX, myY;

};

Not only is the method itself const, but the parameter is const as well. We don't change

either object. We pass the parameter by reference because it's not a primitive type; recall that

passing by reference is a bit faster than by value for non-primitive types.

One way to define this method is as follows:

Coordinate Coordinate::operator+(const Coordinate & point2)

const

{

 Coordinate result(myX + point2.getX(), myY + point2.getY());

 return result;

}

This definition uses our second constructor to construct and initialize result with the

appropriate values.

This function illustrates that, for any overloadable operator Δ, we can use the

notation operatorΔ as the name of a function that overloads Δ with a new definition.

Once such a method has been prototyped and defined as a member of class Coordinate, we

can write familiar looking expressions, such as

point1 + point2

to compute the sum of two Coordinate objects point1 and point2.

The C++ compiler treats such an expression as an alternative notation for the method call:

point1.operator+(point2)

While it is useful to overload all of the arithmetic operators for a Fraction, the particular

operation that we need in order to solve our problem is multiplication (the others, we leave for

the exercises). From the preceding discussion, it should be evident that we need to

overload operator* so that the expression in pierre1.cpp:

oldMeasure * scaleFactor

can be used to multiply the two Fraction objects oldMeasure and scaleFactor.

However, the math here is a bit more involved that in the past examples and tasks. We can get

some insight into the problem by working some simple examples:

• 1/2 * 2/3 = 2/6 = 1/3

• 3/4 * 2/3 = 6/12 = 1/2

We multiply the numerators together and the denominators together, and then we simplify.

The specification for such an operation can be written as follows:

Specification:

receive: rightOperand, a Fraction operand.

return: result, a Fraction, containing the product of the receiver of this message

and rightOperand, simplified, if necessary.

We can construct result by taking the product of the corresponding instance variables and

then simplifying the resulting Fraction.

For the moment, ignore the problem of simplifying a Fraction. Extend

your Fraction class with a definition of operator* that can be used to multiply

two Fraction objects. When we add the code to simplify result, this method will be

reasonably complicated, so define it in the implementation file (and, of course, prototype it in

the header file, in the class definition). Test the correctness of what you have written by

uncommenting the lines in pierre1.cpp that that compute and output newMeasure.

Continue when your multiplication operation yields correct (if unsimplified) results.

The main deficiency of our implementation of operator* is its inability to simplify improper

fractions. That is, our multiplication operation would be improved if class Fraction had

a simplify() operation, such that fractions like: 2/6, 6/12, 12/4 could be simplified to 1/3,

1/2, and 3/1, respectively.

Such an operation is useful to keep fractional results as simple and easy to read as possible. To

provide this capability, we will implement a Fraction method named simplify(). In a

method like operator* which constructs its answer in

a Fraction named result, simplify() can be invoked like so:

result.simplify();

to simplify the Fraction in result.

It will help to phrase this in message passing terms. This calls says, "Hey, result! Simplify

yourself!" result then goes off and simplifies itself (e.g., changes itself from 12/4 to 3/1). I

don't expect anything back; I've told result to do all the work and change itself.

That takes care of result in the multiplication operation, but what about the definition

of simplify()? We shift our perspective to the Fraction that's been told to simplify

itself. There are a number of ways to simplify a fraction. One way is the following algorithm:

1. Find gcd, the greatest common divisor of myNumerator and myDenominator.

2. Replace myNumerator by myNumerator/gcd.

3. Replace myDenominator by myDenominator/gcd.

Those "replace" steps are assignment statements: e.g., "Change my numerator to be my

numerator (my old one) divided by the GCD." Read this statement carefully, and the code writes

itself.

The specification for this method is thus:

Specification:

postcondition: myNumerator and myDenominator do not share an common factors (i.e.,

the fraction is simplified).

Remember that simplify() doesn't need any extra information, except

the Fraction object that it's invoked on, so there are no parameters. Also, the object that

receives this message changes itself, so it cannot be declared const. And there's no need to

return anything. So we end up with only a postcondition in our specification.

The implementation file gcd.cpp contains a function greatestCommonDivisor() that

implements Euclid's algorithm for finding the greatest common divisor of two integers.

Using greatestCommonDivisor() and the preceding algorithm,

define simplify() as a method of class Fraction.

Since this is a complicated operation, define it in the implementation file, and only prototype

it in the header file.

We have now provided all of the operations needed by pierre1.cpp, so the complete

program should be operable and can be used to test the operations of our Fraction class.

b) Part II. pierre2.cpp

In this second part of this exercise, we add the functionality to class Fraction in order

for pierre2.cpp to work properly, so use your text editor to open it for editing.

Output Revisited

While we have provided the capability to output a Fraction value via a print() method,

doing so requires that we write clumsy code like:

cout << "\nThe converted measurement is: ";

newMeasure.print(cout);

cout << "\n\n";

instead of elegant code like:
cout << "\nThe converted measurement is: " << newMeasure <<

"\n\n";

Our print() method does solve the problem, but its solution doesn't fit in particularly well

with the rest of the iostream library operations. It would be preferable if we could use the

usual insertion operator (<<) to display a Fraction value.

Let's revisit our Coordinate class. We would like to be able to write this:

cout << point << endl;

And this should display the Coordinate object named point on cout.

Well, << is an operator just like + or *, and overloading those worked well, so we could add a

method to class ostream overloading operator<< with a new definition to display

a Coordinate value. Then the compiler could treat an expression like

cout << point

as the call
cout.operator<<(point)

However, this would require us to modify ostream, a predefined, standardized class. This

is never a good idea, since the resulting class will no longer be standardized. (It's also very hard

to do.)

We could define operator<< as a method of Coordinate, but C++ would then require us

to invoke the method like so:

point << cout;

Yikes! That looks like cout is being sent to point---the complete opposite of what we want.

Technically, we could use the >> operator instead, but we'd still have the output stream on the

right, and we're used to our streams on the far left. Everyone keeps their streams on the left.

Instead, we can overload the insertion operator (<<) as a normal function (i.e., not as a method)

that takes an ostream (e.g., cout) and a Coordinate (e.g., point) as its operands. That

is, an expression

cout << point

will be translated by the compiler as a normal function call
operator<<(cout, point)

That's exactly what we want.

We define the following function in the header file, following the class declaration:

inline ostream & operator<<(ostream & out, const Coordinate &

coord)

{

 coord.print(out);

 return out;

}

There are several subtle points in this definition that need further explanation:

• Because the function is simple, we define it in the header file as an inline function. Since

it is not a method, defining it in the header file serves as both prototype and definition for

the function. An inline method must still be prototyped in the class so that the compiler fully

understands that it is a member of the class.

• When we invoke this function, the left operand is an ostream which is altered by the

operation---the Coordinate is inserted into the output stream. Since it's changed,

the ostream is a non-const reference parameter.

• When we invoke this function, the type of the right operand is the type of the object we

want to display, and this object does not change. Since it's not primitive, we pass it by

reference; since it does not change, we pass it const.

• We want to chain objects in a output statement:

cout << Value1 << Value2 << ... << ValueN;

The leftmost << is applied first, and the value it returns becomes the left operand to the

second <<. Similarly, the value returned by the second << becomes the left operand of the

third <<, and so on, down the chain. Consequently, our function must return

an ostream to its caller to make the chaining work correctly. However, if we simply make

the return-type ostream (instead of ostream&), the C++ function-return mechanism

will make and return a copy of parameter out which (as an alias for cout) would return a

copy of cout for use by the next operator in the chain. As a result, the next value would

get inserted into a copy of cout, rather than cout itself, which would have unpredictable

results.

What we need is a way to tell the compiler to return the actual object to which out refers,

instead of a copy of it. This is accomplished by defining the function with a reference

return-type, ostream&. The compiler then does all the work to return the actual object

itself (not a copy), and so the chaining will work as we want it to.

• The actual work of formatting and outputting the Coordinate is done by sending

the Coordinate parameter coord the print() message we defined in Part I of this

exercise, with out as its argument. If we hadn't written print(), we could still define

this function using the accessor

methods getNumerator() and getDenominator().

For our Fraction class, the specification of this operation is thus:

Specification:

receive: out, an ostream, and aFraction, a Fraction.

precondition: aFraction.getNumerator() == n and aFraction.getDenominat

or() == d.

output: aFraction, in the form n/d, via out.

passback: out, containing n/d.

return: out, for chaining.

Using this information, overload the output operator for class Fraction. Uncomment the

appropriate line in pierre2.cpp, and test it out. You haven't written the input operator yet,

so don't uncomment those lines yet. Just use the default values in the Fractions. Continue

when pierre2 compiles and executes correctly (as far as it should for now).

Input Revisited

As a dual to output, all of the things we learned about the output operator also apply to the input

operator, just with a slight change in direction (reading information in, instead of sending it

out). The syntax is very similar.

Suppose we wanted to input a Coordinate, entered as

(3,4)

We could define this operator in the header file:
inline istream & operator>>(istream & in, Coordinate & coord)

{

 coord.read(in);

 return in;

}

There are a few differences between the input and output (i.e., extractor and insertion)

operators:

• The insertion operator is operator<<, the extraction operator is operator>>.

• The left operand of the extraction operator is an istream instead of an ostream.

• The right operand is a Coordinate reference, rather than

a const Coordinate reference. Since we want to change this Coordinate, it cannot

be const.

• The function returns a reference to an istream reference instead of

an ostream reference. Similar to the output operator, this is for chaining: cin >>

point1 >> point2;.

This operation is sufficiently simple to define inline within the header file.

Using this information, overload the extraction operator for class Fraction, so that a user

can enter

3/4

to input the fraction 3/4.

Uncomment the remaining statements in pierre2.cpp, and test the correctness of these

operations. Your Fraction class should now have sufficient functionality for Chef Pièrre to

solve his problem using pierre2.

When everything in your Fraction class is correct, complete Fraction.doc.

c) Part III: Friend Functions

While it is not necessary for this particular problem and the code solution we have, there are

certain situations where it is useful for a function that is not a member of a class to be able to

access the private instance variables. By default, C++ will not allow any other function to access

private instance variables.

But suppose we had not written the read() method for class Coordinate, and wanted to

overload operator>> in order to input Coordinate values. We'd probably write what

we do have for read() in the input operator:

istream & operator>>(istream & in, Coordinate & coord)

{

 char ch;

 in >> ch // consume (

 >> coord.myX // read x-coordinate

 >> ch // consume ,

 >> coord.myY // read y-coordinate

 >> ch; // consume)

}

Syntactically, this is 100% correct. However, semantically, the compiler does not allow this

and will generate compilation errors for the accesses to coord's instance variables. As a non-

method, this operator does not have the privilege of accessing the private instance variables.

However, we might like to be able to grant this permission.

For such situations, C++ provides the friend mechanism. If a class names a function as a friend

with the keyword friend, then that non-member function is permitted to access the private

section of the class. A function is declared as a friend by including a prototype of the function

preceded by the keyword friend in the class definition. Thus, we would have to write this in

our Coordinate class:

class Coordinate

{

 public:

 Coordinate();

 Coordinate(double x, double y);

 double getX() const;

 double getY() const;

 Coordinate operator+(const Coordinate & point2) const;

 friend istream & operator>>(istream & in, Coordinate &

coord);

 private:

 double myX, myY;

};

Placing the friend keyword before a function prototype in a class thus has two effects:

• It tells the compiler that the function is not a member of the class.

• It tells the compiler that a definition of that function is nevertheless permitted to access the

private section of the class.

As we have seen in this exercise, an object-oriented programmer can usually find other ways to

implement an operation without resorting to the friend mechanism. In the object-oriented

world, solving a problem through the use of methods is generally preferred to solving it through

use of the friend mechanism. As a result, friend functions tend to be used only when the

object-oriented alternatives are too inefficient for a given situation. Nevertheless, they are a part

of the C++ language, and you should know the distinction between a method and

a friend function of a class.

You could make a similar change to your Fraction class, even just prototype the input and

output operators as friend functions, but it's not necessary.

Object-Centered Design Revisited

Now that you have seen how to build a class, we need to expand our design methodology to

incorporate classes:

1. Describe the behavior of the program.

2. Identify the objects in the problem. If an object cannot be directly represented using

available types, design and implement a class to represent such objects.

3. Identify the operations needed to solve the problem. If an operation is not predefined:

a. Design and implement a function to perform that operation.

b. If the operation is to be applied to a class object, design and implement the

function as a method (or a friend function).

4. Organize the objects and operations into an algorithm.

Using this methodology and the C++ class mechanism, we can now create a software model

of any object! If you can imagine it, you can write a class for it.

The class thus provides the foundation for object-oriented programming, and mastering the

use of classes is essential for anyone wishing to program in the object-oriented world.

Learning to design and implement classes is an acquired skill, so feel free to practice by creating

software models of objects you see in the world around you! You cannot practice this too much.

Submit

Turn in a copy of your code and sample executions of both drivers. Answer the questions posed

in this lab exercise in comments in the Fraction.doc documentation file.

Terminology

accessor method, attribute, class, construct (an object), construct, friend mechanism, inline

method, instance variable, internal perspective, message, method, object-oriented

programming, overloading, postcondition, private, public, reference return-type, scope operator

3. Project 11

Your instructor will assign you one of the problems below. To solve your problem, write a

program that reads the necessary information to compute and output the indicated values, as

efficiently as possible. Following the pattern in the lab exercise, first, design using OCD;

then code your design in C++ using stepwise translation; finally, test your program thoroughly.

Project #11.1: Extend the class Fraction by overloading the remaining arithmetic operators

(+, -, and /), the six relational operators (==, !=, <, >, <=, and >=). Then construct a menu-

driven 4-function calculator that an elementary student can use to check his or her fraction

homework assignments.

In your documentation file, include some comments why % should not (and is not) defined

for Fraction.

Project #11.2: Create a "drill" program for the Fraction class. This program should generate

random fractions (using class RandomInt from C++: An Introduction to Computing) that are

displayed and then asks for the user to type in their product. The program checks the answer

and tells the user if they were right or wrong. This would be great for grade-school kids learning

fractions for the first time. Keep track of the total number of problems the user gets right and

gets wrong; report this number when the program finishes.

Project #11.3: A quadratic equation has the form
ax2 + bx + c = 0

where a, b, and c are all real values. Write a class Quadratic that can be used to model a

quadratic equation, with operations to construct with default values, construct with explicit

values, input, output, extract the instance variables of, evaluate (for a given value of x), find

the roots of, and find the x value at which the value of the Quadratic is minimized (or

maximized).

To test your class, write a menu-driven program that allows a user to enter a quadratic, and

repeatedly process it using any of the provided operations.

Project #11.4: A phone number consists of four separate pieces of information: an area code,

an exchange, a local number, and a long-distance indicator (true or false). Design and build

a PhoneNumber class that models a phone number, providing operations to construct, input,

output, extract each of the instance variables of a PhoneNumber object, and indicate whether

or not the number is long-distance. The input operation should read a local or long-distance

number and set the long-distance indicator accordingly. The output operation should display a

local number differently from the way it displays a long-distance number (e.g., 555-

1234 vs. (616) 555-1234).

To test your class, write a program that simulates an intelligent computer modem dialer by

reading a PhoneNumber, and displaying the number to be dialed. If the number is a long

distance number, it should be preceded by 1-; otherwise it should be displayed as a local

number.

Project #11.5: A playing card has two attributes, its rank (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K,

A) and its suit (e.g., clubs, diamonds, hearts, spades). Design and build a PlayingCard class

that models a playing card. Your class should provide operations to construct, input, output,

compare, and extract the instance variables of a PlayingCard object.

A deck of cards is simply a sequence of cards. Design and create a class DeckOfCards that

represents such objects by using a vector to store a sequence of PlayingCard values.

Your DeckOfCards class should provide operations to construct, shuffle, and take the top

card. The class constructor should initialize the DeckOfCards as a new deck of 52 cards (i.e.,

2-clubs, 3-clubs, ..., A-clubs, 2-diamonds, ..., A-diamonds, 2-hearts, ..., A-hearts, 2-spades, ...,

A-spades). The shuffle operation should rearrange the cards in a deck in random order. The

final operation should remove the top card from the deck, and return that card.

To test your classes, write a program that plays a simple card game (i.e., blackjack, go fish, etc.)

against a human opponent.

Turn In

Turn the following things:

1. Your OCD.

2. Your source program.

3. The output from an execution of your program.

Experiment 12: Enumerations

1. Objective of the Experiment

➢ To learn about enumerations.

➢ To practice writing library functions.

➢ To learn about automatic code generators.

2. Theoretical Background

Introduction

It is often the case that a programmer needs to represent some real-world object whose possible

values are non-numeric. For example:

• Gender: Female, Male.

• Color: Red, Orange, Yellow, Green, Blue, Indigo, Violet.

• Day of the Week: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.

• Months of the

Year: January, February, March, April, May, June, July, August, September, October, No

vember, December.

• Sports Shoe Manufacturers: Adidas, Asics, Converse, Dunlop, ...

• ...

One way to represent such values is using the string type:

cout << "\nEnter your gender: ";

string userGender;

cin >> userGender;

if (userGender == "male")

 // male computations

else if (userGender == "female")

 // female computations

else

 // error

For a few applications, this approach is acceptable. However, while it's easy to implement, it's

not particular efficient. Comparing two string values is a slow operation since, in the worst

case, every character in the two strings must be examined:

bool operator==(const string & str1, const string & str2)

{

 if (str1.size() != str2.size())

 return false;

 else

 {

 for (int i = 0; i < str1.size(); i++)

 if (str1[i] != str2[i])

 return false;

 return true;

 }

}

The actual definition of this operator in the string library might be a bit different, but it's

close to this one.

Let's consider the work involved in the test (userGender == "male"):

1. The literal "male" is converted to a string using the string constructor function,

which makes a copy of the literal using a loop to do the copying.

2. If the sizes are different, another loop is needed to compare all of the characters in the

two strings.

3. Plus, there are a whole bunch of book-keeping operations, but these are few compared to

the two loops.

That's two loops, going through the entire strings. That's a lot of work for seeing if the

gender is male.

In contrast, consider an equality test involving integers, (integer == 5):

1. Call the basic machine instruction comparing integer and 5.

There's no question which one is faster. The integer comparison is a single machine instruction,

but the string comparison is many, many, many machine instructions depending on the size

of the strings.

So how can we use integer comparisons for this type of data? That's the question we answer in

this lab.

Files

Directory: lab12

• Gender.h, Gender.cpp, and Gender.doc implement a gender enumeration.

• driver.cpp implements a driver.

• enumGenerator.cpp implements an enumeration generator (covered later in the

lab).

• Makefile is a makefile.

Create the specified directory, and copy the files above into the new directory. Only gcc users

need a makefile; all others should create a project and add all of the .cpp files to it.

Add your name, date, and purpose to the opening documentation of the code and documentation

files; if you're modifying and adding to the code written by someone else, add your data as part

of the file's modification history.

This lab's exercise has eight parts. The program in driver.cpp tests each part.

Open driver.cpp and take a few moments to study it, noting that most of the program is at

present commented out.

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab12/Gender.h
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab12/Gender.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab12/Gender.doc
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab12/driver.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab12/enumGenerator.cpp
https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/lab12/Makefile

a) Part I: Declaring An Enumeration Type

To provide a way to use real-world names in a program without using a string, C++ allows

a programmer to declare an enumeration type. As its name implies, an enumeration is a type

in which the programmer enumerates (i.e., exhaustively lists) all of the values for that type.

For example, suppose that we want to create a new type named Season, with the

values Spring, Summer, Autumn and Winter. We can do so be creating a Season enumeration,

as follows:

enum Season { SEASON_UNDERFLOW, SPRING, SUMMER,

 AUTUMN, WINTER, SEASON_OVERFLOW };

With this statement, we are declaring the identifier Season as the name of a new data type

whose valid values are SEASON_UNDERFLOW, SPRING, SUMMER, AUTUMN, WINTER,

and SEASON_OVERFLOW.

The "overflow" and "underflow" values provide values for error-handling and other unusual

situations. We don't necessarily want to use them in our programs, but they'll be useful for

detecting and handling error situations.

Given such a declaration, a programmer can write this:

Season aSeason = SPRING;

This declares a variable named aSeason as type Season and initializes it to SPRING.

Since an enumeration is not a string, no quotation marks are needed when you use an

enumeration value like SPRING, which is called an enumerator. Since they are essentially

constant values, it is conventional to write enumerators in uppercase.

The general pattern for declaring an enumeration with N values is thus:

enum NewType { Value1, Value2, ..., ValueN };

This declaration creates NewType as the name of a new type whose valid values

are Value1, Value2, ..., ValueN, which must be valid C++ identifiers, using the same

conventions as for constant identifiers.

Open Gender.h and replace the appropriate comment with a statement that declares a new

type named Gender, whose valid values

are GENDER_UNDERFLOW, FEMALE, MALE, UNKNOWN, and GENDER_OVERFLOW. To

check the syntax of what you have written, uncomment the declaration statement

in driver.cpp and compile your code. When it is syntactically correct, continue to the next

part.

b) Part II: The Input Operation

In order to input an enumeration, it is important to recognize that the input operator (>>) only

works for a type if it has been defined for that type. That is, we cannot simply write

cin >> aGender;

This operator has not yet been defined. We can, however, provide such a definition.

It is important to remember that an istream like cin delivers a stream of characters. That

is, we must read an enumerator as a sequence of characters, i.e., a string, and convert

that string into the corresponding enumerator. The specification of our enumeration-input

function is as follows:

Specification:

receive: in, an istream;

value, an enumeration variable.

precondition: in contains the string of a valid enumerator.

input: the enumerator-string from in.

passback: in, with the enumerator-string extracted from it; value, containing the

corresponding enumerator.

return: in, for chaining.

Our function reads a string corresponding to an enumerator from in, determines the

corresponding enumerator value, and passes back that enumerator value via

the value parameter.

Here is an algorithm to solve this problem for our Season enumeration:

1. Receive in and value.

2. Read aString from in.

3. Convert the characters in aString to upper-case, if need be.

4. If aString equals "SPRING":

 value = SPRING.

Else if aString equals "SUMMER":

 value = SUMMER.

Else if aString equals "FALL" or aString equals "AUTUMN":

 value = AUTUMN.

Else if aString equals "WINTER":

 value = WINTER.

Else

 Display error message and terminate.

End if.

5. Return in.

Since we are comparing string values, we cannot use a switch statement, but must instead

use a multi-branch if to implement this algorithm. The function can be defined as follows:

istream & operator>>(istream & in, Season & value)

{

 string aString;

 in >> aString;

 for (int i = 0; i < aString.size(); i++)

 if (islower(aString[i]))

 aString[i] = toupper(aString[i]);

 if (aString == "SPRING")

 value = SPRING;

 else if (aString == "SUMMER")

 value = SUMMER;

 else if (aString == "AUTUMN" || aString == "FALL")

 value = AUTUMN;

 else if (aString == "WINTER")

 value = WINTER;

 else

 {

 cerr << "\n*** Invalid enumerator: " << aString

 << " received by >>\n" << endl;

 exit(1);

 }

 return in;

}

Note in particular the difference between a string literal and an enumerator. The C++

compiler uses the double-quotes surrounding "SPRING" to distinguish it from an enumerator

like SPRING. If you were to try and assign "SPRING" to value (or

assign SPRING to aString), the compiler would generate an error, since the types of the

objects do not match. Those double quotes make a world of a difference.

You may notice, though, that we're back where we started: comparing strings. Didn't we say

this was really time consuming? Well, yes, it is. However, input comes to us only as chars.

Fortunately, chars can be turned into a string which, in turn, can be turned into an

enumerator. The key for all this work is that we do this conversion from string to

enumerator once, at input. From then on, our code will use the more efficient enumerator. The

majority of useful programs spend most of their time in non-input functions, and that's where

it's most important to have the more efficient enumerator.

Using this function definition as a model, define operator>> for your Gender enumeration

in Gender.cpp, so that it implements the following algorithm:

1. Receive in and value.

2. Read aString from in.

3. Convert the characters in aString to upper-case, if need be.

4. If aString == "FEMALE":

 value = FEMALE.

Else if aString == "MALE":

 value = MALE.

Else if aString == "UNKNOWN":

 value = UNKNOWN.

Else

 Display error message and terminate.

End if.

5. Return in.

Add a prototype for this function in the appropriate places in Gender.h and Gender.doc.

Then uncomment the input step in driver.cpp and test your function by translating your

driver program. When it is syntactically correct, then continue on.

c) Part III: The Output Operation

As with the input operator, the output operator cannot be applied to an object unless it has been

defined for objects of that type. Actually, we can write

cout << aGender;

But this will not print out what we want. We can, however, provide a definition that will print

out useful output.

Similar to an istream, an ostream like cout is a stream of characters. We must display

an enumerator as a sequence of characters, i.e., a string. This implies that our function must

display the string that corresponds to the enumerator it receives. The specification of our

function is thus as follows:

Specification:

receive: out, an ostream, value, an enumeration variable.

precondition: value contains a valid enumerator.

output: the string corresponding to that enumerator, via out.

passback: out, containing the enumerator-string.

return: out, for chaining.

Our function must determine the string that corresponds to the enumerator it receives from

the caller, and display that string. Here is an algorithm to solve this problem for

our Season enumeration:

1. Receive out and value.

2. If value equals SPRING:

 Display "SPRING" via out.

Else if value equals SUMMER:

 Display "SUMMER" via out.

Else if value equals AUTUMN:

 Display "AUTUMN" via out.

Else if value equals WINTER:

 Display "WINTER" via out.

Else

 Display error message and terminate.

End if.

3. Return out.

Since we are comparing enumerator values, which are integer-compatible, we can use

a switch statement to implement this algorithm. So, here's our function:

ostream & operator<<(ostream & out, const Season value)

{

 switch(value)

 {

 case SPRING:

 out << "SPRING";

 break;

 case SUMMER:

 out << "SUMMER";

 break;

 case AUTUMN:

 out << "AUTUMN";

 break;

 case WINTER:

 out << "WINTER";

 break;

 default:

 cerr << "\n*** Invalid enumerator received by <<\n" << endl;

 exit(1);

 }

 return out;

}

The Season parameter is not passed by reference because it is a primitive type. It's

perhaps less efficient to pass it by reference. This is unlike the class objects we passed into the

output operator in the previous lab; then we did pass them by reference.

Using this definition as a model, define operator<< for your Gender enumeration

in Gender.cpp, so that it implements the following algorithm:

1. Receive out and value.

2. If value equals FEMALE:

 Display "FEMALE" via out.

Else if value equals MALE:

 Display "MALE" via out.

Else if value equals UNKNOWN:

 Display "UNKNOWN" via out.

Else

 Display error message and terminate.

End if.

3. Return out.

Add a prototype for this function in the appropriate place in Gender.h and Gender.doc.

Then uncomment the first and last output steps in driver.cpp, and test your function by

translating your driver program. When it is syntactically correct, continue to the next part of the

exercise.

d) Part IV: The Prefix Increment Operator

It is often convenient if we can increment an enumeration variable. For example, we might want

to display the four seasons by writing

for (Season aSeason = SPRING; aSeason <= WINTER; ++aSeason)

 cout << aSeason << ' ';

To write a statement like this, we must provide a definition of the prefix increment

operator ++. We can specify its behavior as follows:

Specification:

receive: value, an enumeration object.

precondition: value contains a valid enumerator.

passback: value, containing the next enumerator in the enumeration (or its OVERFLOW

value).

return: value.

The thing to remember about the prefix increment operator is that its return-value is

the incremented value. (This is unlike the postfix increment operator that we'll see below.) An

algorithm to perform this operation for our Season enumeration is as follows:

1. Receive value.

2. If value equals SPRING:

 value = SUMMER.

Else if value equals SUMMER:

 value = AUTUMN.

Else if value equals AUTUMN:

 value = WINTER.

Else if value equals WINTER:

 value = SEASON_OVERFLOW.

Else

 Display an error message and terminate.

End if.

3. Return value.

Since we are comparing enumerators we can implement this algorithm using

a switch statement:

Season operator++(Season & value)

{

 switch (value)

 {

 case SPRING:

 value = SUMMER;

 break;

 case SUMMER:

 value = AUTUMN;

 break;

 case AUTUMN:

 value = WINTER;

 break;

 case WINTER:

 value = SEASON_OVERFLOW;

 break;

 default:

 cerr << "\n*** Invalid enumerator received by prefix++\n" <<

endl;

 exit(1);

 }

 return value;

}

The algorithm for a version of this operation for the Gender enumeration is similar:

1. Receive value.

2. If value equals FEMALE:

 value = MALE.

Else if value equals MALE:

 value = GENDER_OVERFLOW.

Else

 Display an error message and terminate.

End if.

3. Return value.

Implement this algorithm by defining operator++ in Gender.cpp, and add prototypes of

it to Gender.h and Gender.doc. Test what you have written by uncommenting the three

lines in driver.cpp that refer to gender1. Then translate and run your program. Continue

when it works correctly.

e) Part V: The Postfix Increment Operator

While overloading the prefix operator provides us with the means of incrementing an

enumeration, it is also sometimes desirable to be able to use the postfix increment operation.

For example, we might want to display the four seasons by writing

for (Season aSeason = SPRING; aSeason <= WINTER; aSeason++)

 cout << aSeason << ' ';

The syntactic difference here is that the ++ increment operator is after (i.e., "post")

the aSeason variable.

For this to work, we must provide a definition of the postfix increment operator ++, whose

behavior is just slightly different from that of the prefix version:

Specification:

receive: value, an enumeration object.

precondition: value contains a valid enumerator.

passback: value, containing the next enumerator in the enumeration (or its OVERFLOW

value).

return: the original enumerator of value.

It's identical to the specification for the prefix increment operator expect for one slight change

to the return specification: return the original value of value. That's because the postfix

increments the value after the return value is determined.

An algorithm to perform this operation for our Season enumeration is thus slighly different:

1. Receive value.

2. Set savedValue to be value.

3. If value equals SPRING:

 value = SUMMER.

Else if value equals SUMMER:

 value = AUTUMN.

Else if value equals AUTUMN:

 value = WINTER.

Else if value equals WINTER:

 value = SEASON_OVERFLOW.

Else

 Display an error message and terminate.

End if.

4. Return savedValue.

Defining this function poses a syntax problem in C++. We've already used this prototype for

the prefix increment operator:

Season operator++(Season & value);

But the postfix increment operators should have the same parameter list! So, C++ cheats---it

has to. As a special case for a postfix increment operator, we add an extra

(anonymous) int parameter like so:

Season operator++(Season & value, int);

We can then define this function for our Season enumeration as follows:

Season operator++(Season & value, int)

{

 Season savedValue = value;

 switch (value)

 {

 case SPRING:

 value = SUMMER;

 break;

 case SUMMER:

 value = AUTUMN;

 break;

 case AUTUMN:

 value = WINTER;

 break;

 case WINTER:

 value = SEASON_OVERFLOW;

 break;

 default:

 cerr << "\n*** Invalid enumerator received by postfix++\n"

<< endl;

 exit(1);

 }

 return savedValue;

}

In odd situations like this where a parameter is needed, but not required by the function's

definition, C++ allows us to forgo supplying a name for the parameter.

The algorithm for a version of this operation for the Gender enumeration is similar:

1. Receive value.

2. Set savedValue to value.

3. If value equals FEMALE:

 value = MALE.

Else if value equals MALE:

 value = GENDER_OVERFLOW.

Else

 Display an error message and terminate.

End if.

4. Return savedValue.

Implement this algorithm to define a postfix version of operator++ in Gender.cpp. Add

prototypes of it to Gender.h and Gender.doc. Test what you have written by

uncommenting the three lines in driver.cpp that refer to gender3. Then translate and run

your program. Continue when it works correctly.

f) Part VI: The Prefix Decrement Operator

Now if we envision incrementing an enumeration, it seems reasonable that we'll also want to

decrement it. We might want to display the four seasons in reverse order by writing

for (Season aSeason = WINTER; aSeason >= SPRING; --aSeason)

 cout << aSeason << ' ';

To write this code, we must provide a definition of the prefix decrement operator --. The

decrement operator is a dual to the increment operator, so the prefix decrement operator should

look at lot like the prefix increment operator, just changing increments to decrements and

overflows to underflows.

Since we've already gone through the prefix increment operator, we're going to let you try the

prefix decrement operator on your own. First, establish a specification for a prefix decrement

operator for an enumeration:

Question #12.1: Write down the specification for the prefix decrement operator for an

enumeration.

Now the algorithm:

Question #12.2: Write an algorithm for the prefix decrement operator for

the Gender enumeration.

Implement this algorithm by defining operator-- in Gender.cpp, and add prototypes of

it to Gender.h and Gender.doc. Test what you have written by uncommenting the three

lines in driver.cpp that refer to gender2. Translate and run your program. Continue when

it works correctly.

g) Part VII: The Postfix Decrement Operator

Our final operation is the postfix decrement operation. For example, we might want to display

the four seasons in reverse order by writing

for (Season aSeason = WINTER; aSeason >= SPRING; aSeason--)

 cout << aSeason << ' ';

Again, we've already seen the postfix increment operator, which is structurally similar (if not

identical) to the postfix decrement operator. So the job is all yours:

Question #12.3: Write down the specification for the postfix decrement operator for an

enumeration.

Now be a bit more specific for a Gender enumeration:

Question #12.4: Write an algorithm for the postfix decrement operator for

the Gender enumeration.

Implement this algorithm in your code. This postfix decrement operator also takes an

unused int parameter just like the postfix decrement operator.

h) Part VIII: A Code-Generating Tool for Enumerations

For most enumerations a programmer wants to use, the programmer follows these same steps:

1. Declare the enumeration.

2. Implement the input operation.

3. Implement the output operation.

4. Implement the prefix increment operation.

5. Implement the postfix increment operation.

6. Implement the prefix decrement operation.

7. Implement the postfix decrement operation.

Some enumerations may require additional operations (e.g., a daysIn() function would be

useful for a Month enumeration), but these six operations are a minimal group needed by any

enumeration.

The process of defining these operations for a given enumeration is a mechanical one. (Hey,

implement a few more enumerations if you don't believe us.) Aside from the particular

enumerator values, the algorithms for each of these operations follow exactly the same

structure. This process is so mechanical, it is straightforward to write a program that, given a

sequence of enumerators and the desired name of the enumeration, generates the C++ code to

declare the enumeration type and its operations. In fact, some languages automatically define

the operations for you by the compiler whenever you create a new enumeration.

We have written a little program in enumGenerator.cpp that, given the name of an

enumeration and a sequence of enumerators stored (one per line) in a file, generates the header,

implementation, and documentation files for that enumeration.

Save a copy of enumGenerator.cpp in your directory and translate it.

Use a text editor to create an input file daysofweek.txt containing the days of the week:

sunday

monday

tuesday

wednesday

thursday

friday

Saturday

Run enumGenerator; name the enumeration Day and use daysoftheweek.txt as the

input file. enumGenerator should then generate the files Day.h, Day.cpp,

and Day.doc. Take a few moments to look over these files, and see how much code was just

automatically generated for you!

Create a driver to test out the day tester (perhaps transliterate the driver for

the Gender enumeration).

You may wish to study enumGenerate.cpp to see how it does what it does. You will likely

run into similar situations in the future where taking the time to write a code-generating program

will be a worthwhile investment of your time.

Remember, whenever you find yourself doing the same thing over and over, look for a better

way, often one that the computer can do for you. Automated code generators of this sort are

one way to solve such problems.

Submit

Submit all of the code for the Gender and Day enumerations (but

not enumGenerate.cpp). Also turn in a sample execution of both drivers.

Terminology

enumerate, enumeration type, enumerator, prefix increment operatör

3. Project 12

Your instructor will assign you one of the problems below. To solve your problem, write a

program that reads the necessary information to compute and output the indicated values, as

efficiently as possible. Following the pattern in the lab exercise, first, design using OCD;

then code your design in C++ using stepwise translation; finally, test your program thoroughly.

Project #12.1: Extend your Gender enumeration with these operations:

• Next(Gender value); that returns the enumerator that follows value, wrapping

around from the last valid enumerator to the first valid enumerator---

returns FEMALE when value is UNKNOWN, returns MALE when value is FEMALE, and

returns UNKNOWN when value is MALE.

• Previous(Gender value); that returns the enumerator that precedes value,

wrapping around from the first valid enumerator to the last valid enumerator---i.e.,

returns FEMALE when value is MALE, returns MALE when value is UNKNOWN, and

returns UNKNOWN when value is FEMALE.

Write a driver program that tests your functions.

Project #12.2: Build a Month enumeration. Using it, create a Date class that stores the

month, day, and year for a date. Test your class by writing a program that reads two dates, and

returns the number of days between those two dates (don't forget to consider leap years).

Project #12.3: Extend the classes in enumGenerator.cpp to automatically generate

the Next() and Previous() functions described in the previous project

for any enumeration.

Project #12.4: Build two enumerations:

• Suit, containing the values Clubs, Diamonds, Hearts and Spades.

• Rank, containing the

values Ace, Two, Three, Four, Five, Six, Seven, Eight, Nine, Ten, Jack, Queen, King.

Use these enumerations to design and build a PlayingCard class. Using this class

and vector, build a DeckOfCards class. Provide the following operations:

• A constructor that creates a new (in-order) deck of cards.

• A Shuffle() operation that arranges the PlayingCards in a DeckOfCards in

random order.

• A TopCard() operation that returns the top card in the DeckOfCards() without

removing it.

• A DealTopCard() operation that returns the top card in the DeckOfCards() and

removes it.

Use these classes to write a program that plays a simple card game, such as "Go Fish."

Turn In

Turn the following things:

1. Your OCD.

2. Your source program.

3. The output from an execution of your program.

SOURCES

https://cs.calvin.edu/activities/books/c++/intro/3e/HandsOnC++/

